
1

DJANGO FRAMEWORK

LABORATARY MANUAL

DEPARTMENT OF COMPUTER SCIENCE AND

INFORMATION TECHNOLOGY

2

VISION

To excel in computing arena and to produce globally competent computer science and

Information Technology graduates with Ethical and Human values to serve the society

MISSION

 To impart strong theoretical and practical background in computer science and

information technology discipline with an emphasis on software development.

 To provide an open environment to the students and faculty that promotes

professional growth

 To inculcate the skills necessary to continue their education and research for

contribution to society.

DEPARTMENT OF COMPUTER SCIENCE AND INFORMATION TECHNOLGOY

3

COURSE OUTCOMES (CO’s)

CO1: Understand the environment of DJango Web Server Framework.

CO2: Create URL Mappings and Views using Templates.

CO3: Create DJango models for processing data from templates

CO4: Understand DJango Forms and Signals

CO5: Implement Restfull APIs using DJango Rest Framework

PROGRAM EDUCATIONAL OBJECTIVES (PEOs)

PEO1: Graduates of Computer Science and Information Technology will acquire strong

knowledge to analyze, design, and develop computing products and solutions for real-life

problems utilizing the latest tools, techniques, and technologies.

PEO2: Graduates of Computer Science and Information Technology shall have

interdisciplinary approach, professional attitude and ethics, communication, teamwork skills

and leadership capabilities to solve social issues through their Employment, Higher Studies

and Research.

PEO3: Graduates will engage in life-long learning and professional development to adapt to

dynamically computing environment.

4

PROGRAM OUTCOMES (POs)

PO1: Engineering Knowledge

PO2: Problem Analysis

PO3: Design & Development

PO4: Investigations

PO5: Modern Tools

PO6: Engineer & Society

PO7: Environment & Sustainability

PO8: Ethics

PO9: Individual & Team Work

PO10: Communication Skills

PO11: Project Mgt & Finance

PO12: Life Long Learning

PROGRAM SPECIFIC OUTCOMES (PSOs)

PSO1: Ability to solve contemporary issues utilizing skills.

PSO2: To acquire knowledge of the latest tools and technologies to provide technical solutions

PSO3: To qualify in national and international competitive examinations for successful higher

studies and employment.

5

DJANGO FRAME WORK LAB SYLLABUS

Module 1: DJANGO FRAMEWORK- Introduction to DJango, Features of DJango, Application areas

of DJango, Flask vs DJango, DJango Components, Install and Configure DJango Components.

List of Programs:

1. Create DJango environment setup and installation in Windows/Linux. (L5)

2. Create DJango Projct and app structure with django-admin commands. (L5)

3. Deployment of Project in server. (L2)

Module 2: DJANGO TEMPLATES: URLs, Views, Static Files, Images, Forms, Application

development using Templates, Template Objects, tags, Filters, Loops and Inheritance.

List of Programs:

1. Create template in DJango Project to process user interface. (L5)

2. Create multiple routes from using Django URLS. (L5)

3. Implement template inheritance with views and images. (L3)

Module 3: DJANGO MODELS: Introduction to DJango Models, Admin Panel, Database

Relationships, One-One, One- Many, Many-Many, Model Queries, Rendering Data to Templates,

Dynamic URLs and Routing, CRUD operations.

List of Programs:

1. Create database configuration in DJango admin with Sqlite3. (L5)

2. Implement CRUD operations using Django models. (L3)

3. Implement database relationships using django models. (L3)

4. Implement data rendering with templates and dynamic routing. (L3)

Module 4: DYNAMIC FORMS & SIGNALS: Inline Form sets, Search Forms, User Registration and

Login Authentication, User Roles & Permissions, User Profiles, Image Upload, DJango Signals,

Creating customer profiles with DJango.

List of Programs:

1. Create user registration and login authentication using django forms. (L5)

2. Implement the roles and permissions for user profile. (L3)

6

3. Implement Django signal for user profiles. (L3)

Module 5 : DJANGO REST FRAMEWORK: Introduction to DJango Rest Framework, Features of

Rest APIs, Installation of DJango Rest Framework, api_view, Response, JSONResponse, Models and

Serializers, PATH and urlpatterns, HTTP methods GET, POST, PUT and DELETE methods

List of Programs:

1. Install and configure DJango Rest framework package. (L2)

2. Create django rest end points using api_view and JSONResponse. (L5)

3. Create Django rest end points using Serializers and Models. (L5)

4. Implement HTTP rest end points with all CRUD operations. (L3)

7

--

COURSE OUTCOMES Vs PO’s & PSO’s

SNO DESCRIPTION
PO(1..12)

MAPPING

PSO(1..3)

MAPPING

SC3201.1 Understand the environment of DJango

Web Server Framework.

PO2,PO3 PSO1,PSO2

SC3201.2 Create URL Mappings and Views using

Templates.

PO3,PO11 PSO1

SC3201.3 Create DJango models for processing data

from templates

PO3,PO11 PSO2

SC3201.4 Understand DJango Forms and Signals PO1,PO6 PSO1

SC3201.5 Implement Restfull APIs using DJango

Rest Framework

PO3,PO6 PSO2

SC3201.* Able to analyze the real world problem and

implement using Restfull APIs Developing

The applications that relates to Services

which are Enterprise.

PO1,PO2,PO3,PO5

PO6,PO11

PSO1,PSO2

PSO3

COURSE OVERALL PO/PSO MAPPING:

8

-

SYLLABUS INDEX

SNO

PROGRAM DESCRIPTION

Page No
Mapping

with COs

Mapping

with POs

and PSOs

1
Create DJango environment setup and

installation in Windows/Linux.

11 CO2 PO1,PSO1

2
Create DJango Project and app structure with

django-admin commands.

11-12 CO2 PO1,PO2,

PSO1

3 Deployment of Project in server.
14-15 CO2 PO1,PO2,

PSO1

4
Create template in DJango Project to process

user interface.

17-21 CO2 PO1,PO2,

PO3,PSO1

5
Create multiple routes from using Django

URLS

22-23 CO2 PO1,PO2,

PO3,PSO1

6

Implement template inheritance with views

and images.

23-24 CO1,CO2 PO1,PO2,

PSO1

7
Create database configuration in DJango

admin with Sqlite3.

27-28 CO1,CO2 PO1,PO2,

PSO1

8

Implement CRUD operations using Django

models.

29-32 CO1,CO2 PO1,PO2,

PSO1

9
Implement database relationships using

django models.

33-34 CO1,CO2 PO1,PO2,

PO3,PSO1

10

Implement data rendering with templates and

dynamic routing.

35-36 CO1,CO2 PO1,PO2,

PO3,PSO1

11

Create user registration and login

authentication using django forms.

38-46 CO1,CO2 PO1,PO2,

PO3,PSO1

12

Implement the roles and permissions for user

profile.

48 CO1,CO2 PO1,PO2,

PSO1

9

13 Implement Django signal for user profiles.
49-51 CO1,CO2 PO1,PO2,

PO3,PSO1

PROGRAMS BEYOND SYLLABUS

14

Real-Time Collaborative Application with

Django and WebSockets

61 CO1,CO2,C

O3,CO4,CO5

,CO6

PO1,PO2,

PO3,PO11

PSO1,PS

O2

15
Django with Redis for Caching and Session

Management

69 CO1,CO2,C

O3,CO4,CO5

,CO6

PO1,PO2,

PO3,PSO1

PSO2

OPEN ENDED EXPERIMENTS

16 Develop a Multi-Tenant SaaS Application 70

17 Create a Social Media Platform with Django 74

10

Instructions to students

Pre-lab activities:

 Prepare observation note book which contains the following :

 Procedure/algorithm/program to solve the problems discussed in the theory class

 Solutions to the exercises given in the previous lab session

 Refer the topics covered in theory class

In-lab activities:

 Note down errors observed while executing program and remedy for that.

 Note down corrections made to the code during the lab session

 Answer to vivo-voce

 Get the observation corrected

 Note down inferences on the topic covered by the programs executed

Post-lab activities:

 Solve the given exercises

 Devise possible enhancements that can be made to the solved problem to simplify the logic

 Executed programs should be recorded in the lab record and corrected within one week after

completion of the experiment.

 After completion of every module, a test will be conducted, and assessment results will have

weight in the final internal marks.

General Instructions:

 Student should sign in the log register before accessing the system.

 Student is only responsible for any damage caused to the equipment in the laboratory during his
session.

 Usage of pen drives is not allowed in the lab.

 If a problem is observed in any hardware equipment, please report to the lab staff immediately;

do no attempt to fix the problem yourself.

 Systems must be shut down properly before leaving the lab.

 Please be considerate of those around you, especially in terms of noise level. While labs are a
natural place for conversations regarding programming, kindly keep the volume turned down

11

MODULE-1

1A) AIM: Create Django environment setup and installation in windows/Linux

 DESCRIPTION:

 First go to search bar and search CMD

 Move E drive by using command e: enter

 Then we get E:\>

 Create a folder by using cmd : mkdir <folder name> (press enter)

 Move to folder using cmd : cd <folder name> (press enter)

 OUTPUT: E:\<FOLDER NAME>>

 Installation of django : pip install django

2) A I M : Create DJANGO project and app structure with django-

admin commands

 DESCRIPTION :

 To know commands of django use cmd : >django-admin Output

C:\Users\lendi>django-admin

Type 'django-admin help <subcommand>' for help on a specific subcommand.

Available subcommands: [django]

 check

 compilemessages

12

 createcachetable

13

enter)

dbshell

 diffsettings

 dumpdata

 flush

 inspectdb

 loaddata

 makemessages

 makemigrations

 migrate

 optimizemigration

 runserver

 sendtestemail

 shell

 showmigrations

 sqlflush

 sqlmigrate

 sqlsequencereset

 squashmigrations

 startapp

 startproject

 test

 testserver

These are the commands available in django

Steps to create project :

E:/<folder-name>>django-admin startproject <project name> (press enter)

Steps for creating app inside project :

E:\<FOLDER-NAME>> cd <project name> (press enter)

E:\<FOLDER-NAME>/<project name> django-admin startapp <app name> (press

14

OUTPUT :

C:\Users\lendi>e:

E:\>mkdir django5b1

E:\>cd django5b1

E:\django5b1>django-admin startproject lendi

E:\django5b1>cd lendi

E:\django5b1\lendi>django-admin startapp cse

GO TO SUBLIME TEXT (OR) VISUAL STUDIO CODE:

Drag the file lendi and drop in sublime text :

3. AIM :Deployment of project in server

 DESCRIPTION:

 Steps for deployment

 Using cmd : E:\django5b1\lendi>python manage.py runserver

15

Using : http://127.0.0.1:8000/ run server

in chromeOUTPUT :

16

VIVA QUESTIONS :

1. What is Django and why is it used in web development?

2. Can you explain the concept of "MTV" in Django?

3. What are Django's main features?.

4. How does Django handle URLs and routing in a web application?

5. What are Django models, and how do they work?

6. How do you create a Django project and a Django app?

7. What is the role of Django templates?.

8. What is the purpose of the settings.py file in Django?

9. What is Django’s Admin interface, and how can you customize it?

10. How does Django handle forms and form validation?

17

MODULE-2

1. AIM : Create template in Django Project to process user interface

DESCRIPTION: Step 1: connect to drive

>D:

Step 2: create project

D:/>django-admin startproject emp

Step 3: connect to project

D:/>cd emp

In visual studio

Step 4: creating app inside project

D:/>django-admin startproject employee

Step 5: open folder in sublime text or visual studio

18

Step 6: create template inside employee

Click on employee new ->new folder-> name it as templates

Step 7: Create employee as folder inside template

Templates-> new-> new folder-> employee

19

Step 8: move to employee- apps.py-copy EmployeeConfig

Step 9:in emp go to settings.py-

Add import os

Add INSTALLED_APPS = [

'employee.apps.EmployeeConfig',….]

20

Step 10:in employee->templates->employee-> create Home.html(new file)

In Home.html write a basic html code

<html>

<head>

<title></title>

</head>

<body>

<h1> Welcome </h1>

</body>

</html>

Step 11: employee->views.py

Add code

def emphome(request):

return render(request,’employee/Home.html')

Step 12: in employee create urls.py(new file)

from django.contrib import admin

from django.urls import path,include

from.import views

urlpatterns = [
path('home/',views.emphome),

]

Save changes

Step 13: in emps->urls.py Add code

from django.contrib import admin

from django.urls import path,include

urlpatterns = [

path('admin/', admin.site.urls),

path('',include('employee.urls'))

]

Step 14: save changes

Step 15: go cmd for running server

D:\django\emp>python manage.py runserver

Copy http://127.0.0.1:8000/

Goto chrome and run server http://127.0.0.1:8000/home/

21

OUTPUT :

2. AIM :Create multiple routes from using Django URL’s.

DESCRIPTION:

Step 1: To create a new URL route in Django, you'll need to edit the

urls.py file in your app's

directory. This file contains a list of URL patterns that the Django router uses to match

incoming requests to view functions.(for same project as in module-2.1)

Step 2: in views.py add code

from django.shortcuts import render

from django.http import HttpResponse

def home(request):

return HttpResponse("Hello, world!")

def about(request):

return HttpResponse("<h1> WElcome to home page")

Create your views here.

Step 3: in employee->urls.py

Add routes

from django.contrib import admin

from django.urls import path,include

urlpatterns = [

path('admin/', admin.site.urls),

path('home/',include('employee.urls'))

]

Step 4: emp->urls.pyfrom django.contrib

 import admin from django.urls

import path,include from.import views

urlpatterns = [

path('', views.home),

22

path('about/', views.about),

]

23

In this code, we've imported the path function from the django.urls module, as well as two view
functions from our app's views.py file. We've then defined a list of URL patterns using the
urlpatterns variable.

The first URL pattern, path('', views.index, name='index'), maps the root URL of our app

(i.e., http://localhost:8000/) to the index view function. The name parameter is an optional

identifier that we can use to refer to this URL pattern later in our code.

The second URL pattern, path('about/', views.about, name='about'), maps the URL

http://localhost:8000/about/ to the about view function. This demonstrates how you can create

a sub-URL within your app, by appending a unique path segment to the root URL.

Let's take a closer look at how view functions work in Django.

View functions are Python functions that take an incoming request as their first parameter,
and return an HTTP response. They are responsible for rendering HTML templates,

interacting with models and databases, and processing user input.

Here's an example views.py file that defines the two view functions used in the urls.py file

above:

pythonCopy code

from django.shortcuts import render from django.http import HttpResponse def

index(request): return HttpResponse("Hello, world!") def about(request): return

render(request, 'about.html')

In this code, we've imported two functions from the django.shortcuts and django.http

modules: render and HttpResponse. We've then defined two view functions that correspond

to the URL patterns in our urls.py file.

The index function simply returns an HTTP response containing the text "Hello, world!" This

demonstrates the most basic type of view function, which doesn't use any HTML templates or

interact with databases.

The about function, on the other hand, uses the render function to generate an HTTP response

containing the contents of an HTML template. The render function takes two parameters: the

incoming request, and the name of the template file to be rendered. In this case, we're

rendering a template called about.html, which should be stored in our app's templates

directory.

Step 5:

Save changes and runserver

>python manage.py run server

http://127.0.0.1:8000/

http://127.0.0.1:8000/home/

24

OUTPUT

http://127.0.0.1:8000/home/about/

3. AIM :Implement template inheritance with views and images.

DESCRIPTION:

To load images, we have to create static app .

Step 1: In emp we have to create new folder named static.

Step 2: in static folder we have to add images folder.

Step 3: In images folder we have to add a .png file.

Step 4: in settings.py we have to load static and images.

STATIC_URL = 'static/'

MEDIA_URL='/images/'

STATICFILES_DIRS=[

os.path.join(BASE_DIR,'static')

]

Step 5: In home.html add code for image

<!DOCTYPE html>

{% load static %}

<html>

<head>

<title></title>

</head>

<body>

</body>

</html>

Step 6: save changes

Step 7: runserver

25

26

VIVA QUESTIONS

1. What are Django templates?

2. What is Django Template Language (DTL)?

3. How do you pass data from views to templates in Django?

4. What are template tags in Django?

5. What are template filters in Django?.

6. What is the purpose of the {% block %} tag in templates?

7. What is template inheritance in Django?

8. How do you include other templates in a Django template?

9. What are static files in Django templates, and how do you use them?

10. What is the {% extends %} tag in Django templates?

27

MODULE-3

1) AIM : Create database configuration in Django admin with

DESCRIPTION:

sqlite3. Step 1: Create a new project and make all steps that are mentioned in

previous modulesStep 2: Here I have taken app named charity

In that I want add donors data base – in models.py

from django.db import

models from django.utils

import timezoneclass

Donate(models.Model):

donationType = models.CharField(max_length =200)
donationAmount = models.FloatField(null=True)

donationDate = models.DateTimeField(auto_now_add=timezone.now())

Step 3: in admin.py

from django.contrib

import adminfrom
.models import Donate

admin.site.register(Dona

te)

Step 4: in cmd we perform migrations

> python manage.py makemigrations

This will create a new directory called
migration files.

Step 5: > python manage.py migrate

inside your app directory with the initial

Step 6: we have to create users for that we use command

> python manage.py createsuperuser

Then it will ask details like

Step 7: once the user is created run server

http://127.0.0.1:8000/admin/

migrations

28

Login using user details.

Step 8: after logging in we are directed to site administartion

29

from django.db import models

class Book(models.Model):

title = models.CharField(max_length=255)

author = models.CharField(max_length=255)

publication_date = models.DateField()

price = models.DecimalField(max_digits=5, decimal_places=2)

from django.shortcuts import render, redirect

from .models import Book

from .forms import BookForm

def create_book(request):

if request.method == 'POST':

form = BookForm(request.POST)

if form.is_valid():

form.save()

return redirect('book_list')

else:

form = BookForm()

return render(request, 'book_form.html', {'form': form})

2) AIM :Implement CRUD operations using django models

 DESCRIPTION :
Here's an example of how you can implement CRUD operations using Django models:

Let's say we have a model called Book that has the following fields:

To perform CRUD operations on this model, we can define views that correspond to each

operation.

Create

To create a new Book instance, we can define a view that handles a POST request to a URL

like /books/new/. The view should take the form data submitted with the POST request and

use it to create a new Book instance:

30

from django.shortcuts import render

from .models import Book

def book_list(request):

books = Book.objects.all()

return render(request, 'book_list.html', {'books': books})

from django.shortcuts import render, get_object_or_404

from .models import Book

def book_detail(request, pk):

book = get_object_or_404(Book, pk=pk)

return render(request, 'book_detail.html', {'book': book})

Here, we're using a Django ModelForm to generate an HTML form based on the Book
model. If the form is submitted with valid data, we save the form data as a new Book instance
and redirect the user to a page that lists all the books.

Read
To retrieve a list of all Book instances, we can define a view that handles a GET request to a

URL like /books/. The view should query the database for all Book instances and pass them

to a template for rendering:

Here, we're using the Django ORM's all() method to retrieve all Book instances from the

database. We're then passing the list of books to a template called book_list.html, which will

render each book in a table row.

To retrieve a single Book instance, we can define a view that handles a GET request to a

URL like /books/<int:pk>/. The pk parameter is the primary key of the Book instance we

want to retrieve. We can query the database for the Book instance with this primary key and

pass it to a template for rendering:

31

from django.shortcuts import render, redirect, get_object_or_404

from .models import Book

from .forms import BookForm

def update_book(request, pk):

book = get_object_or_404(Book, pk=pk)

if request.method == 'POST':

form = BookForm(request.POST, instance=book)

if form.is_valid():

form.save()

return redirect('book_list')

else:

form = BookForm(instance=book)

return render(request, 'book_form.html', {'form': form})

Here, we're using the Django ORM's get_object_or_404() function to retrieve the Book

instance with the given primary key. If the instance doesn't exist, the function will raise a

Http404 exception. We're then passing the Book instance to a template called

book_detail.html, which will render the book's details.

Update

To update an existing Book instance, we can define a view that handles a POST request to a

URL like /books/<int:pk>/edit/. The view should retrieve the Book instance with the given

primary key, update its fields with the form data submitted with the POST request, and save

the updated instance to the database:

Here, we're using a Django `ModelForm` to generate an HTML form based on the `Book`

instance we want to update. If the form is submitted with valid data, we save the updated

form data to the existing `Book` instance and redirect the user to a page that lists all the

books.

Delete

32

from django.shortcuts import render, redirect, get_object_or_404

from .models import Book

def delete_book(request, pk):

book = get_object_or_404(Book, pk=pk)

if request.method == 'POST':

book.delete()

return redirect('book_list')

return render(request, 'book_confirm_delete.html', {'book': book})

To delete an existing `Book` instance, we can define a view that handles a POST request to a
URL like `/books/<int:pk>/delete/`. The view should retrieve the `Book` instance with the
given primary key and delete it from the database:

Here, we're using the `delete()` method on the `Book` instance to delete it from the database.

If the request method is POST (i.e. the user has confirmed the deletion), we delete the

instance and redirect the user to a page that lists all the books. If the request method is GET,

we render a confirmation page that asks the user to confirm the deletion.

33

from django.db import models

class Genre(models.Model):

name = models.CharField(max_length=255)

class Book(models.Model):

title = models.CharField(max_length=255)

genres = models.ManyToManyField(Genre)

3) Implement database relations using Django models

you can implement database relations using Django models with different types of
relationships:

One-to-Many Relationship

A one-to-many relationship is a relationship in which a single instance of one model is

related to multiple instances of another model. In Django, this is represented by a ForeignKey

field on the many-side model.

Let's say we have a Book model and an Author model, and each book is written by a single

author:

from django.db import models

class Author(models.Model):

name = models.CharField(max_length=255)

class Book(models.Model):

title = models.CharField(max_length=255)

author = models.ForeignKey(Author, on_delete=models.CASCADE)

Here, the Book model has a ForeignKey field called author that refers to an instance of the

Author model. The on_delete argument specifies what should happen to the Book instances if

the related Author instance is deleted. In this case, we're using models.CASCADE, which

means that if an Author instance is deleted, all related Book instances will also be deleted.

Many-to-Many Relationship

A many-to-many relationship is a relationship in which each instance of one model can be

related to multiple instances of another model, and vice versa. In Django, this is represented

by a ManyToManyField on both models.

Let's say we have a Book model and a Genre model, and each book can belong to multiple

genres

34

from django.db import models

class Publisher(models.Model):

name = models.CharField(max_length=255)

class Book(models.Model):

title = models.CharField(max_length=255)

publisher = models.OneToOneField(Publisher, on_delete=models.CASCADE)

Here, the Book model has a ManyToManyField called genres that refers to instances of the

Genre model. The genres field creates a many-to-many relationship between Book and Genre

instances.

One-to-One Relationship
A one-to-one relationship is a relationship in which each instance of one model is related to

exactly one instance of another model, and vice versa. In Django, this is represented by a

OneToOneField on one of the models.

Let's say we have a Book model and a Publisher model, and each book is published by a

single publisher:

Here, the Book model has a OneToOneField called publisher that refers to an instance of the

Publisher model. The publisher field creates a one-to-one relationship between Book and

Publisher instances.

35

from django.urls import path

from . import views

urlpatterns = [

path('', views.post_list, name='post_list'),

path('post/<int:pk>/', views.post_detail, name='post_detail'),

]

{% extends 'base.html' %}

{% block content %}

<h1>Blog Posts</h1>

{% for post in posts %}

<h2>{{ post.title }}</h2>

<p>{{ post.content }}</p>

{% empty %}

<p>No posts yet.</p>

{% endfor %}

{% endblock %}

4) AIM :Implement data rendering with templates and data routing.

DESCRIPTION :Here's an example of how to render data using Django templates and routing:

Routing

To route URLs in Django, you can define URL patterns in a urls.py file. Here's an example

urls.py file for a simple blog app:

Here, we're defining two URL patterns: one for the list of blog posts (''), and one for the detail

view of a single post ('post/<int:pk>/'). The int:pk part of the second pattern means that
Django will match an integer and assign it to the pk argument of the view function.

Rendering Data with Templates

To render data in a Django template, you can use template tags and filters. Here's an example
post_list.html template that renders a list of blog posts:

36

{% extends 'base.html' %}

{% block content %}

<h1>{{ post.title }}</h1>

<p>{{ post.content }}</p>

{% endblock %}

from django.shortcuts import render, get_object_or_404

from .models import Post

def post_list(request):

posts = Post.objects.all()

return render(request, 'post_list.html', {'posts': posts})

def post_detail(request, pk):

post = get_object_or_404(Post, pk=pk)

return render(request, 'post_detail.html', {'post': post})

Here, we're using the extends template tag to extend a base template, and the block template

tag to define a content block that will be filled in by the child template. We're using the for

template tag to loop over a list of Post objects, and the url template tag to generate a URL for

the detail view of each post. Finally, we're using the empty template tag to display a message

if there are no posts.

Here's an example post_detail.html template that renders the detail view for a single post:

Here, we're again using the extends template tag to extend a base template, and the block

template tag to define a content block. We're using the {{ }} syntax to display the title and

content of the Post object passed to the template context.

Views.py

Finally, we need to define the views that will render these templates and provide data to

them. Here's an example views.py file:

37

VIVA QUESTIONS

1. What is the role of Django models in web development?

2. Explain the concept of Django ORM and how it relates to models.

3. What are the different types of fields available in Django models, and how do they

work?

4. What is a ForeignKey in Django models, and how is it used to define relationships?

5. What is the significance of the save() method in Django models?

38

from django.contrib import admin

from django.urls import path,include

urlpatterns = [

path('admin/', admin.site.urls),

path('',include('Employee.urls')),

]

from django.urls import path,include

MODLE-4

1. AIM :Create user registration and login authentication using Django forms

 DESCRIPTION

 The project Employee management system(EMS) has basically two important pages

o Registration page

o Login page

 The project directory structure looks like

The important files here are

1. Urls.py EMS

2. Urls.py Employee app

39

from django.shortcuts import render,redirect

from Employee.models import Employee

from django.contrib import messages

Create your views here.

def Register(request):

return render(request,'Employee/register.html')

def Login(request):

return render(request,'Employee/login.html')

def User(request):

if request.method == 'POST':

eid=request.POST['eid']

email=request.POST['mail']

ename=request.POST['ename']

id=Employee.objects.all().count()+1

flag=Employee.objects.filter(eid=eid).count()

if(flag!=1):

Employee(id,eid,email,ename).save()

return render(request,'Employee/userpage.html',{'name':ename})

else:

messages.error(request, 'User already exists')

return redirect('/register')

def validate(request):

if request.method == 'POST':

eid=request.POST['eid']

email=request.POST['mail']

flag=Employee.objects.filter(eid=eid,email=email).count()

if(flag==1):

row=Employee.objects.filter(eid=eid,email=email)

for i in row:

name=i.ename

return render(request,'Employee/userpage.html',{'name':name})

3. Views.py  Employee app

from . import views

urlpatterns = [

path('register/',views.Register),

path('register/user/',views.User),

path('login/',views.Login),

path('login/validateuser/',views.validate),

]

40

4. register.html  templatesEmployee

{% load static %}

<!DOCTYPE html>

<html lang="en">

<head>

<meta charset="UTF-8">

<meta http-equiv="X-UA-Compatible" content="IE=edge">

<meta name="viewport" content="width=device-width, initial-scale=1.0">

<title>register</title>

<link href="https://cdn.jsdelivr.net/npm/bootstrap@5.3.0-

alpha1/dist/css/bootstrap.min.css" rel="stylesheet" integrity="sha384-

GLhlTQ8iRABdZLl6O3oVMWSktQOp6b7In1Zl3/Jr59b6EGGoI1aFkw7cmDA6j6gD"

crossorigin="anonymous">

<link rel="stylesheet" href="{% static 'Employee/styleRegister.css' %}">

</head>

<body>

<div class="container-fluid" id="signup">

<form class="p-5" action="user/" method="post">

{% csrf_token %}

<div class="mb-3">

<label for="eid" class="form-label">Employee Id</label>

<input type="text" placeholder="your id" class="form-control" id="eid" name="eid"

required>

</div>

<div class="mb-3">

<label for="mail" class="form-label">Email address</label>

<input type="email" placeholder="your email" class="form-control" id="mail"

name="mail" required>

</div>

<div class="mb-3">

<label for="ename" class="form-label">Name</label>

<input type="text" placeholder="name" class="form-control" id="ename"

name="ename" required>

</div>

<button type="submit" class="btn btn-secondary">Register</button>

<div class="mb-3">

else:
messages.error(request, 'Invalid id or mail')

return redirect('/login')

https://cdn.jsdelivr.net/npm/bootstrap%405.3.0-

41

#signup{

margin-top: 50px;

}

#signup form{

width: 35%;

margin-left: auto;

margin-right: auto;

background-color: aliceblue;

box-shadow: 2px 3px 3px 1px black;

border-radius: 10px;

}

#signup form label{

font-size: medium;

font-family: 'Times New Roman', Times, serif;

}

{% load static %}

<!DOCTYPE html>

<html lang="en">

<head>

<meta charset="UTF-8">

5. styleRegister.css  static Employee

6. login.html  templatesEmployee

<label class="p-3">Are you already a user <a href="/login" class="mx-

2">login</label>

</div>

<div class="mb-3">

<p style="color:firebrick;text-align: center; font-weight: bold; font-

family:cursive;">{% for message in messages %}

{{ message }}

{% endfor %}</p>

</div>

</form>

</div>

<script src="https://cdn.jsdelivr.net/npm/bootstrap@5.3.0-

alpha1/dist/js/bootstrap.bundle.min.js" integrity="sha384-

w76AqPfDkMBDXo30jS1Sgez6pr3x5MlQ1ZAGC+nuZB+EYdgRZgiwxhTBTkF7CXvN"

crossorigin="anonymous"></script>

</body>

</html>

https://cdn.jsdelivr.net/npm/bootstrap%405.3.0-

42

<meta http-equiv="X-UA-Compatible" content="IE=edge">

<meta name="viewport" content="width=device-width, initial-scale=1.0">

<title>login</title>

<link href="https://cdn.jsdelivr.net/npm/bootstrap@5.3.0-

alpha1/dist/css/bootstrap.min.css" rel="stylesheet" integrity="sha384-

GLhlTQ8iRABdZLl6O3oVMWSktQOp6b7In1Zl3/Jr59b6EGGoI1aFkw7cmDA6j6gD"

crossorigin="anonymous">

<link rel="stylesheet" href="{% static 'Employee/styleLogin.css' %}">

</head>

<body>

<div class="container-fluid py-5" id="login">

<p>Login here</p>

<form action="validateuser/" method="post" class="p-5">

{% csrf_token %}

<div class="mb-3">

<label for="eid" class="form-label">Employee id</label>

<input type="text" placeholder="Id" class="form-control" id="eid" name="eid"

required>

</div>

<div class="mb-3">

<label for="mail" class="form-label">Email</label>

<input type="email" placeholder="mail" class="form-control" id="mail"

name="mail" required>

</div>

<button type="submit" class="btn btn-secondary">Login</button>

<div class="mb-3">

<label class="p-3">Are you a new user <a href="/register" class="mx-

2">signup</label>

</div>

<div class="mb-3">

<p style="color:firebrick;text-align: center; font-weight: bold; font-

family:cursive;">{% for message in messages %}

{{ message }}

{% endfor %}</p>

</div>

</form>

</div>

<script src="https://cdn.jsdelivr.net/npm/bootstrap@5.3.0-

alpha1/dist/js/bootstrap.bundle.min.js" integrity="sha384-

w76AqPfDkMBDXo30jS1Sgez6pr3x5MlQ1ZAGC+nuZB+EYdgRZgiwxhTBTkF7CXvN"

crossorigin="anonymous"></script>

</body>

</html>

7. styleLogin.css static Employee

https://cdn.jsdelivr.net/npm/bootstrap%405.3.0-
https://cdn.jsdelivr.net/npm/bootstrap%405.3.0-

43

from django.db import models

Create your models here.

class Employee(models.Model):

eid=models.CharField(max_length=20)

email=models.CharField(max_length=50)

ename=models.CharField(max_length=20)

from django.contrib import admin

from .models import Employee

Register your models here.

admin.site.register(Employee)

8. Models.py

9. admin.py

10. userpage.html

#login{

margin-top: 50px;

}

#login form{

width: 35%;

margin-left: auto;

margin-right: auto;

background-color: aliceblue;

box-shadow: 2px 3px 3px 1px black;

border-radius: 10px;

}

#login form label{

font-size: medium;

font-family: 'Times New Roman', Times, serif;

}

#login p{

font-size: 17px;

font-family:Arial, Helvetica, sans-serif;

text-align: center;

}

44

D:\django\Ems>python manage.py runserver

Copy http://127.0.0.1:8000/

Goto your browser and paste this url in the address bar http://127.0.0.1:8000/register/ y

OUTPUT

When u try to register with your details

<!DOCTYPE html>
<html lang="en">

<head>

<meta charset="UTF-8">

<meta http-equiv="X-UA-Compatible" content="IE=edge">

<meta name="viewport" content="width=device-width, initial-scale=1.0">

<title>Document</title>

</head>

<body>

<div>

<h1>hello {{ name }}</h1>

</div>

</body>

</html>

45

You get the output as follows

Similarly if you paste this url in the address bar http://127.0.0.1:8000/login/

you get output as follows

46

If you login with your credentials

You get this page

47

VIVA QUESTIONS

1. What are dynamic forms in Django?

2. How do you create a dynamic form in Django?

3. What is a Django signal?

4. How do you connect a signal to a model in Django?

5. What are the common use cases for Django signals?

48

D:\django\EMS> pip install djangorestframework

INSTALLED_APPS = [

...

'rest_framework',

]

Now the Django rest framework is ready and available and you can use it in your project to

create the Web APIs.

2. Create Django rest end points using api_view and JSON Response.

MODULE-5

DJANGO REST FRAMEWORK

To work with the Django rest framework we should have the two basic requirements.

Python (3.6, 3.7, 3.8, 3.9, 3.10)

Django (2.2, 3.0, 3.1, 3.2, 4.0, 4.1)

1. AIM :Install and configure Django Rest Framework Package.

DESCRIPTION :

Step1: navigate to your project folder from the command prompt

Step2: Install Django rest framework using pip.

Step3: Add 'rest_framework' to your INSTALLED_APPS in your settings.py file.

 To create the rest end points you have to return a JSON response from the requested url

Urls.py

from django.urls import path,include

from . import views

urlpatterns = [

path('',views.my_view),

49

w

w

from rest_framework.response import Response

from rest_framework.decorators import api_view

@api_view(['POST','GET','DELETE'])

def my_view(request):

return Response({'status':'success','message':'request is success','details':'you can give any

request("get","put","delete")'},status=200)

In views.py we have used a decorator api_view and a Response class from rest_framework. 

@api_vie is a decorator provided by the Django REST Framework (DRF) that is used to

specify that a function-based view or method-based view should be treated as a web API

view.

@api_vie takes an HTTP method or a list of HTTP methods as an argument. For example,

to specify that a view should handle only POST requests, you would use the

@api_view(['POST']) decorator.

The response class is used to return the JSON response to the client.

OUTPUT

 Now if you run the server and paste the url in your browser you get the output as

]

Views.py

 You can also give the request to that particular url from the editor that you are working.

 Here in this case I am using VScode as my editor.

 Download the Thunder client extension and you can give a request fron the editor itself.

 The below picture is the different requests given from the thunder client to our url.

50

51

 In Django, a serializer is a component of the Django REST framework (DRF) that is

used to convert complex data types, such as Django model instances, into Python

native data types that can be easily rendered into JSON, XML.

 Inorder to create a serializer you have to create a serializers.py file inside your app

employee

Urls.py

from django.urls import path,include

from . import views

urlpatterns = [

path('employees',views.Employees),

]

from rest_framework import serializers

from .models import *

class EmployeeSerializer(serializers.ModelSerializer):

class Meta:

model = Employee

fields=' all '

3. Create Django rest end points using Serializers and Models.

 Serializers.py

52

from rest_framework.response import Response

from rest_framework.decorators import api_view

from .models import *

from .serializers import *

@api_view(['GET'])

def Employees(request):

emps=Employee.objects.all()

serializer=EmployeeSerializer(emps,many=True)

return Response({'status':'success','description':'list of

employees','employees':serializer.data},status=200)

Run the server and paste the url in the browser and you can see the output as

from django.db import models

Create your models here.

class Employee(models.Model):

eid=models.CharField(max_length=20)

email=models.CharField(max_length=50)

ename=models.CharField(max_length=20)

views.py

 models.py

53

And you can see the output from the VScode editor as follows.

4. Implement HTTP rest end points with all CRUD operations.

CRUD operations refers to the operations done on the database, where

 C- create -to create a new record.

 R- retrive-retriving the records from database.

 U- update-to update the records in the database.

 D- delete the records in the database.

To implement the HTTP rest end points with all CRUD operations using DRF

we should use the api_view decorators inorder to specify the HTTP method.

54

The following are the endpoints which are responsible for different CRUD operations

Urls.py

urlpatterns = [

path('all',views.All),

path('new',views.New),

path('update/<str:eid>/',views.Update),

path('delete/<str:eid>/',views.Delete),

]

The following are the views that handles the different CRUD operations

Views.py

from rest_framework.response import Response

from rest_framework.decorators import api_view

from .models import *

from .serializers import *

#list of employees

@api_view(['GET'])

def All(request):

emps=Employee.objects.all()

serializer=EmployeeSerializer(emps,many=True)

return Response(serializer.data,status=200)

#add a new employee

@api_view(['POST'])

def New(request):

serializer=EmployeeSerializer(data=request.data)

if serializer.is_valid():

serializer.save()

return Response(serializer.data,status=200)

#update a employee by using emp id

@api_view(['PUT'])

def Update(request,eid):

emp=Employee.objects.get(eid=eid)

serializer=EmployeeSerializer(instance=emp,data=request.data)

if serializer.is_valid():

serializer.save()

return Response(serializer.data,status=200)

55

so the each endpoint is handling the different CRUD operations as follows

Retriving all the employees (GET):

run the server and paste the url in the browser http://127.0.0.1:8000/api/all

Adding a new employee (POST):

run the server and paste the url in the browser http://127.0.0.1:8000/api/new

#delete a employee by using emp id
@api_view(['DELETE'])

def Delete(request,eid):

emp=Employee.objects.get(eid=eid)

emp.delete()

return Response("employee is deleted",status=200)

56

After clicking on post the record is added to the employee table

If you again see the total no. of employees present , you can observe the difference.

Updating an employee using empid (PUT):

run the server and paste url http://127.0.0.1:8000/api/update/emp101/

57

After clicking on put, the record with empid emp101 is updated i.e the name of the employee

from ram to sitaram

If you again see the total no. of employees present , you can observe the difference.

Deleting an employee using empid (DELETE):

run the server and paste url http://127.0.0.1:8000/api/delete/emp101/

58

After clicking on delete, the record with empid emp101 is going to delete and there is prompt

is there for us

If you click on delete again the record with the empid value as emp101 is deleted. If you

again see the total no. of employees present , you can observe the difference.

Click DELETE

59

60

VIVA QUESTIONS

1. What is Django Rest Framework (DRF)?

2. What is a serializer in Django Rest Framework?

3. What is the difference between APIView and ViewSet in DRF?

4. How does Django Rest Framework handle authentication?

5. What is a router in Django Rest Framework?

61

14. AIM :Real-Time Collaborative Application with Django and WebSockets

DESCRIPTION :

Steps to Build a Real-Time Collaborative Application:

1. Setting up Django Project

First, create a Django project if you haven’t already.

bash

Copy code

django-admin startproject realtime_app

cd realtime_app

python manage.py startapp chat

2. Install Django Channels

Django Channels is an extension for Django that adds support for WebSockets and other asynchronous

protocols. To install Channels, run:

bash

Copy code

pip install channels

After installing Channels, you need to configure it in your settings.py.

3. Configure Channels in settings.py

In your settings.py, add 'channels' to your INSTALLED_APPS:

python

Copy code

INSTALLED_APPS = [

 'django.contrib.admin',

 'django.contrib.auth',

 'django.contrib.contenttypes',

 'django.contrib.sessions',

 'django.contrib.messages',

 'django.contrib.staticfiles',

 'chat', # your app

 'channels', # channels app

]

Set ASGI_APPLICATION to point to your routing configuration:

python

Copy code

ASGI_APPLICATION = 'realtime_app.asgi.application'

Then, configure the database to use for Channels (e.g., Redis) for handling WebSocket connections. Redis

is typically used as a backend to handle the channel layer, which makes it easy to handle multiple

connections.

Install Redis and Channels Redis:

62

bash

Copy code

pip install channels_redis

In settings.py, add the following:

python

Copy code

CHANNEL_LAYERS = {

 'default': {

 'BACKEND': 'channels_redis.core.RedisChannelLayer',

 'CONFIG': {

 "hosts": [('127.0.0.1', 6379)],

 },

 },

}

Make sure you have Redis installed and running on your local machine or use a hosted Redis solution.

4. Create an ASGI Configuration

Create an asgi.py file in your project root (next to settings.py) if it doesn't already exist.

python

Copy code

realtime_app/asgi.py

import os

from django.core.asgi import get_asgi_application

from channels.routing import ProtocolTypeRouter, URLRouter

from channels.auth import AuthMiddlewareStack

from chat.consumers import ChatConsumer

os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'realtime_app.settings')

application = ProtocolTypeRouter({

 "http": get_asgi_application(),

 "websocket": AuthMiddlewareStack(

 URLRouter([

 # Add URL routing for WebSocket connections

 # Example for chat

 path('ws/chat/<str:room_name>/', ChatConsumer.as_asgi()),

])

),

})

5. Create a WebSocket Consumer

In Django Channels, a "consumer" is similar to a Django view but for handling WebSocket connections.

Create a consumers.py file inside your app (e.g., chat/consumers.py):

python

Copy code

chat/consumers.py

import json

from channels.generic.websocket import AsyncWebsocketConsumer

class ChatConsumer(AsyncWebsocketConsumer):

 async def connect(self):

 self.room_name = self.scope['url_route']['kwargs']['room_name']

63

 self.room_group_name = f'chat_{self.room_name}'

 # Join room group

 await self.channel_layer.group_add(

 self.room_group_name,

 self.channel_name

)

 await self.accept()

async def disconnect(self, close_code):

 # Leave room group

 await self.channel_layer.group_discard(

 self.room_group_name,

 self.channel_name

)

 # Receive message from WebSocket

 async def receive(self, text_data):

 text_data_json = json.loads(text_data)

 message = text_data_json['message']

 # Send message to room group

 await self.channel_layer.group_send(

 self.room_group_name,

 {

 'type': 'chat_message',

 'message': message

 }

)

 # Receive message from room group

 async def chat_message(self, event):

 message = event['message']

 # Send message to WebSocket

 await self.send(text_data=json.dumps({

 'message': message

 }))

6. Routing WebSocket Requests

In the asgi.py file, you already defined the routing for WebSockets. Here’s a closer look:

python

Copy code

path('ws/chat/<str:room_name>/', ChatConsumer.as_asgi()),

This will match WebSocket requests at the URL /ws/chat/<room_name>/, where room_name can be any

string that identifies the chat room.

7. Creating a Frontend with WebSocket

For the frontend, you can use JavaScript to connect to the WebSocket.

Here’s an example of how to create a simple HTML template with a WebSocket connection:

html

Copy code

<!-- templates/chat/room.html -->

<!DOCTYPE html>

64

<html>

<head>

 <title>Real-time Chat</title>

 <style>

 #chat-log {

 border: 1px solid #ccc;

 height: 200px;

 overflow-y: scroll;

 margin-bottom: 10px;

 }

 </style>

</head>

<body>

 <h1>Chat Room: {{ room_name }}</h1>

 <div id="chat-log"></div>

 <input id="chat-message-input" type="text" placeholder="Type your message">

 <button id="chat-message-input-btn">Send</button>

 <script>

 const roomName = "{{ room_name }}";

 const chatSocket = new WebSocket('ws://' + window.location.host + '/ws/chat/'

+ roomName + '/');

 chatSocket.onmessage = function(e) {

 const data = JSON.parse(e.data);

 document.querySelector('#chat-log').innerHTML += '<p>' + data.message +

'</p>';

 };

 document.querySelector('#chat-message-input-btn').onclick = function(e) {

 const messageInputDom = document.querySelector('#chat-message-input');

 const message = messageInputDom.value;

 chatSocket.send(JSON.stringify({ 'message': message }));

 messageInputDom.value = '';

 };

 </script>

</body>

</html>

8. Views for Serving the Template

In your Django app, create a view to render the chat room page:

python

Copy code

chat/views.py

from django.shortcuts import render

def room(request, room_name):

 return render(request, 'chat/room.html', {

 'room_name': room_name

 })

Add a URL pattern for this view in your app’s urls.py:

python

Copy code

chat/urls.py

from django.urls import path

from . import views

urlpatterns = [

65

 path('<str:room_name>/', views.room, name='room'),

]

And make sure to include the app’s URLs in your main urls.py:

python

Copy code

realtime_app/urls.py

from django.contrib import admin

from django.urls import path, include

urlpatterns = [

 path('admin/', admin.site.urls),

 path('chat/', include('chat.urls')),

]

9. Running the Application

Make sure Redis is running, and then run your Django project:

bash

Copy code

python manage.py runserver

Navigate to http://127.0.0.1:8000/chat/some_room/ in your browser to see the real-time chat in

action. Multiple users can open the same room in different browsers, and they will see messages in real-

time.

15. Django with Redis for Caching and Session Management

Steps to Set Up Django with Redis for Caching and Session Management

1. Install Redis and Required Packages

First, you'll need to install the redis package for Python and the django-redis package which helps

Django interact with Redis more easily.

bash

Copy code

pip install redis django-redis

Ensure you have Redis installed and running on your local machine or use a managed Redis service.

2. Configure Redis for Caching in Django

In Django, you can use Redis as a caching backend by configuring it in your settings.py.

Caching Configuration

In your settings.py, add the following cache configuration to use Redis:

python

66

Copy code

settings.py

CACHES = {

 'default': {

 'BACKEND': 'django_redis.cache.RedisCache',

 'LOCATION': 'redis://127.0.0.1:6379/1', # Redis server URL (127.0.0.1:6379,

database 1)

 'OPTIONS': {

 'CLIENT_CLASS': 'django_redis.client.DefaultClient',

 },

 }

}

Explanation of parameters:

 BACKEND: django_redis.cache.RedisCache is the backend class for caching using Redis.

 LOCATION: The Redis server location. Here it points to localhost (127.0.0.1) and uses the

second Redis database (/1).

 OPTIONS: These are additional configurations. You can use 'CLIENT_CLASS':

'django_redis.client.DefaultClient' to specify a default client class.

3. Configure Redis for Session Management

To store Django sessions in Redis (instead of the default database), you can set up session management like

this:

Session Configuration

In your settings.py, add the following configuration for session management:

python

Copy code

settings.py

Session engine to use Redis as a session store

SESSION_ENGINE = "django.contrib.sessions.backends.cache"

SESSION_CACHE_ALIAS = "default" # Use the default cache configuration

With the above settings, Django will store session data in Redis instead of the default database-backed

session engine.

4. Using Redis for Cache in Views

Once Redis caching is set up, you can use it in your views to store and retrieve cached data.

Example: Caching a view in Django.

python

Copy code

views.py

from django.shortcuts import render

from django.core.cache import cache

def cached_view(request):

 # Try to get the cached data

 cached_data = cache.get('some_key')

 if not cached_data:

67

 # If cache is empty, calculate the value and cache it

 cached_data = "This is some expensive data or result"

 # Set cache with a timeout of 60 seconds

 cache.set('some_key', cached_data, timeout=60)

 return render(request, 'cached_view.html', {'cached_data': cached_data})

5. Using Redis for Sessions

Once you have Redis configured for session management, you can use the Django session framework just

like you normally would. The only difference is that session data will now be stored in Redis.

Example of setting and getting session data:

python

Copy code

views.py

from django.shortcuts import render

def set_session(request):

 # Set session data

 request.session['user_name'] = 'John Doe'

return render(request, 'set_session.html', {'user_name': 'John Doe'})

def get_session(request):

 # Get session data

 user_name = request.session.get('user_name', 'Guest')

 return render(request, 'get_session.html', {'user_name': user_name})

In this example:

 set_session: Stores the user_name in the session.

 get_session: Retrieves the user_name from the session.

Optional: Using Redis for Other Caching Features

 Cache versioning: You can use cache versioning to prevent old versions of cache from being used.

 Cache timeout: Use cache.set() with a timeout argument to control how long the data should

remain in the cache.

 Cache keys: Store and retrieve data from Redis using unique keys, e.g.,

cache.get('user_data_%s' % user_id).

Full Example: Setting Up Redis with Caching and Session Management

Here is a full example integrating both caching and session management in Django with Redis.

1. Install the packages:

bash

Copy code

pip install redis django-redis

2. Configure settings.py:

python

Copy code

settings.py

68

Use Redis for caching

CACHES = {

 'default': {

 'BACKEND': 'django_redis.cache.RedisCache',

 'LOCATION': 'redis://127.0.0.1:6379/1',

 'OPTIONS': {

 'CLIENT_CLASS': 'django_redis.client.DefaultClient',

 },

 }

}

Use Redis for session management

SESSION_ENGINE = "django.contrib.sessions.backends.cache"

SESSION_CACHE_ALIAS = "default"

Optional: Use Redis as the default backend for the Django Channels (if you want

WebSockets support)

CHANNEL_LAYERS = {

 'default': {

 'BACKEND': 'channels_redis.core.RedisChannelLayer',

 'CONFIG': {

 'hosts': [('127.0.0.1', 6379)],

 },

 },

}

3. Create Views for Caching and Session Management:

python

Copy code

views.py

from django.shortcuts import render

from django.core.cache import cache

Example to cache a view's data

def cached_view(request):

 # Try to get the cached data

 cached_data = cache.get('some_key')

 if not cached_data:

 # If cache is empty, calculate the value and cache it

 cached_data = "This is some expensive data or result"

 # Set cache with a timeout of 60 seconds

 cache.set('some_key', cached_data, timeout=60)

 return render(request, 'cached_view.html', {'cached_data': cached_data})

Example to set session data

def set_session(request):

 # Set session data

 request.session['user_name'] = 'John Doe'

 return render(request, 'set_session.html', {'user_name': 'John Doe'})

Example to get session data

def get_session(request):

 # Get session data

 user_name = request.session.get('user_name', 'Guest')

 return render(request, 'get_session.html', {'user_name': user_name})

4. Create Templates for the Views:

html

69

Copy code

<!-- cached_view.html -->

<!DOCTYPE html>

<html>

<head>

 <title>Cache Example</title>

</head>

<body>

 <h1>Cached Data: {{ cached_data }}</h1>

</body>

</html>

html

Copy code

<!-- set_session.html -->

<!DOCTYPE html>

<html>

<head>

 <title>Set Session Example</title>

</head>

<body>

 <h1>Session Data: {{ user_name }}</h1>

</body>

</html>

html

Copy code

<!-- get_session.html -->

<!DOCTYPE html>

<html>

<head>

 <title>Get Session Example</title>

</head>

<body>

 <h1>Session Data: {{ user_name }}</h1>

</body>

</html>

5. Add URL Routing:

python

Copy code

urls.py

from django.urls import path

from . import views

urlpatterns = [

 path('cached/', views.cached_view, name='cached_view'),

 path('set-session/', views.set_session, name='set_session'),

 path('get-session/', views.get_session, name='get_session'),

]

6. Run the Project:

Make sure Redis is running locally or via a remote server.

bash

Copy code

redis-server

python manage.py runserver

Now you can visit:

 /cached/ to see the cached data.

70

 /set-session/ to set session data.

 /get-session/ to get session data.

16. AIM :Develop a Multi-Tenant SaaS Application

DESCRIPTION:

Steps to Develop a Multi-Tenant SaaS Application in Django

1. Create a Django Project and App

Let’s start by creating a new Django project and a tenant app.

bash

Copy code

django-admin startproject saas_project

cd saas_project

python manage.py startapp tenant

2. Install Dependencies

You'll need to install django-tenants, a package designed for multi-tenancy, which helps with managing

tenants in a shared database schema.

bash

Copy code

pip install django-tenants

3. Configure settings.py

Modify the settings.py to include the necessary configurations for multi-tenancy. Update

INSTALLED_APPS, DATABASES, and middleware settings.

python

Copy code

settings.py

INSTALLED_APPS = [

 # Default Django apps...

 'django.contrib.admin',

 'django.contrib.auth',

 'django.contrib.contenttypes',

 'django.contrib.sessions',

 'django.contrib.messages',

 'django.contrib.staticfiles',

 # Tenant apps

 'tenant',

 'django_tenants', # django-tenants app

]

DATABASES = {

 'default': {

 'ENGINE': 'django.db.backends.postgresql_psycopg2',

 'NAME': 'saas_db', # Single shared database

 'USER': 'your_db_user',

 'PASSWORD': 'your_db_password',

 'HOST': 'localhost',

 'PORT': '5432',

71

 }

}

Use django-tenants middleware

MIDDLEWARE = [

 'django_tenants.middleware.TenantMiddleware', # Handles tenant-specific routing

 'django.middleware.security.SecurityMiddleware',

 'django.contrib.sessions.middleware.SessionMiddleware',

 'django.middleware.common.CommonMiddleware',

 'django.middleware.csrf.CsrfViewMiddleware',

 'django.contrib.auth.middleware.AuthenticationMiddleware',

 'django.contrib.messages.middleware.MessageMiddleware',

 'django.middleware.clickjacking.XFrameOptionsMiddleware',

]

Define the domain for each tenant

TENANT_MODEL = "tenant.Tenant" # The model to represent tenants

TENANT_DOMAIN_MODEL = "tenant.Domain" # The model to represent tenant domains

4. Create Tenant Models

You will need to create models to represent your tenants and their domains. A tenant typically has a name

and a domain that maps to the tenant’s specific subdomain or URL.

python

Copy code

tenant/models.py

from django.db import models

from django_tenants.models import TenantMixin

class Tenant(TenantMixin):

 name = models.CharField(max_length=255)

 created_on = models.DateField(auto_now_add=True)

 def __str__(self):

 return self.name

class Domain(models.Model):

 tenant = models.ForeignKey(Tenant, related_name='domains',

on_delete=models.CASCADE)

 domain = models.CharField(max_length=253) # E.g., 'tenant1.myapp.com'

 is_primary = models.BooleanField(default=True)

 def __str__(self):

 return self.domain

The Tenant model inherits from TenantMixin, which is provided by django-tenants and manages

tenant-specific configurations.

5. Define Tenant-Aware Models

To ensure that each tenant’s data is isolated, you need to define tenant-specific models. You can do this by

inheriting from TenantModel provided by django-tenants.

python

Copy code

tenant/models.py (continued)

from django_tenants.models import TenantModel

class Product(TenantModel):

72

 tenant = models.ForeignKey(Tenant, on_delete=models.CASCADE)

 name = models.CharField(max_length=255)

 price = models.DecimalField(max_digits=10, decimal_places=2)

 description = models.TextField()

 def __str__(self):

 return self.name

In the Product model, the tenant field ensures that each product is associated with a particular tenant.

6. Set Up URLs for Each Tenant

To differentiate between tenants, you can use subdomains. You will need to modify the urls.py to handle

different tenant URLs.

python

Copy code

saas_project/urls.py

from django.contrib import admin

from django.urls import path, include

urlpatterns = [

 path('admin/', admin.site.urls),

 path('tenant/', include('tenant.urls')), # Tenant-specific URLs

]

For each tenant, you can add a specific view and URL that is unique to the tenant.

7. Tenant-Specific Views

Create views that will serve tenant-specific data. For example, let’s create a view that displays products.

python

Copy code

tenant/views.py

from django.shortcuts import render

from .models import Product

def product_list(request):

 tenant = request.tenant # Access the tenant from the request

 products = Product.objects.filter(tenant=tenant)

 return render(request, 'tenant/product_list.html', {'products': products})

8. Create Templates for Tenant Views

Create a template to render the products for the tenant.

html

Copy code

<!-- tenant/templates/tenant/product_list.html -->

<!DOCTYPE html>

<html>

<head>

 <title>Tenant Products</title>

</head>

<body>

 <h1>Products for {{ request.tenant.name }}</h1>

73

 {% for product in products %}

 {{ product.name }} - {{ product.price }}

 {% endfor %}

</body>

</html>

9. Set Up URLs for Tenant-Specific Views

Now, set up tenant-specific URLs to display the products.

python

Copy code

tenant/urls.py

from django.urls import path

from . import views

urlpatterns = [

 path('products/', views.product_list, name='product_list'),

]

10. Create the Tenant Database Schema

When you run migrate, django-tenants will create separate schemas in the same database for each

tenant.

bash

Copy code

python manage.py migrate_schemas --shared

This will create the shared schema (for models like Tenant and Domain), and then create individual

schemas for each tenant when a new tenant is created.

11. Create a Tenant and Add Domain

To create a tenant, you can use the Django shell:

bash

Copy code

python manage.py shell

python

Copy code

from tenant.models import Tenant, Domain

Create a new tenant

tenant = Tenant(name="Tenant 1")

tenant.save()

Add a domain for the tenant

domain = Domain(tenant=tenant, domain="tenant1.myapp.com", is_primary=True)

domain.save()

12. Tenant Middleware

The django-tenants middleware will automatically route requests to the correct tenant based on the

subdomain or domain. Make sure to have the middleware configured correctly, as shown in the

settings.py earlier.

74

13. Run the Application

Once you’ve set up everything, you can start the Django development server.

bash

Copy code

python manage.py runserver

Now you can access tenant-specific data via URLs like:

 http://tenant1.myapp.com/tenant/products/ for Tenant 1

 http://tenant2.myapp.com/tenant/products/ for Tenant 2 (if you add another tenant).

17. AIM :Create a Social Media Platform with Django

DESCRIPTION:

Step-by-Step Code

1. Setting Up Django Project and App

First, create a new Django project and app:

bash

Copy code

django-admin startproject social_media

cd social_media

python manage.py startapp accounts

python manage.py startapp posts

2. Install Dependencies

You will need django and django-allauth (for user authentication, optional but useful):

bash

Copy code

pip install django django-allauth

3. Configure settings.py

Update settings.py to include necessary apps and middleware:

python

Copy code

settings.py

INSTALLED_APPS = [

 'django.contrib.admin',

 'django.contrib.auth',

 'django.contrib.contenttypes',

 'django.contrib.sessions',

 'django.contrib.messages',

 'django.contrib.staticfiles',

 'accounts', # Custom user app

 'posts', # App for posts

 'django.contrib.sites', # Needed for allauth

 'allauth', # Allauth for authentication

75

 'allauth.account', # Account management via allauth

 'allauth.socialaccount', # Social login (optional)

 'django.contrib.sites',

]

MIDDLEWARE = [

 'django.middleware.security.SecurityMiddleware',

 'django.contrib.sessions.middleware.SessionMiddleware',

 'django.middleware.common.CommonMiddleware',

 'django.middleware.csrf.CsrfViewMiddleware',

 'django.contrib.auth.middleware.AuthenticationMiddleware',

 'django.contrib.messages.middleware.MessageMiddleware',

 'django.middleware.clickjacking.XFrameOptionsMiddleware',

]

AUTHENTICATION_BACKENDS = (

 'allauth.account.auth_backends.AuthenticationBackend',

)

Use email as the unique identifier for users

ACCOUNT_AUTHENTICATED_LOGIN_REDIRECTS = True

ACCOUNT_EMAIL_REQUIRED = True

ACCOUNT_EMAIL_VERIFICATION = "mandatory"

LOGIN_REDIRECT_URL = "/"

Sites framework for handling multiple domains (needed for allauth)

SITE_ID = 1

Make sure to set up urls.py for allauth:

python

Copy code

social_media/urls.py

from django.contrib import admin

from django.urls import path, include

urlpatterns = [

 path('admin/', admin.site.urls),

 path('accounts/', include('allauth.urls')), # Add allauth urls for authentication

]

4. Create User Profile Model

In the accounts app, create a model for user profiles. Users can have additional information such as bio,

profile picture, etc.

python

Copy code

accounts/models.py

from django.contrib.auth.models import User

from django.db import models

class Profile(models.Model):

 user = models.OneToOneField(User, on_delete=models.CASCADE)

 bio = models.TextField(blank=True, null=True)

 profile_picture = models.ImageField(upload_to='profiles/', blank=True, null=True)

 def __str__(self):

 return self.user.username

76

5. User Registration and Profile Update

We can use allauth for user registration, but you may want to allow users to update their profile after

registration. Here is a form to handle the profile update:

python

Copy code

accounts/forms.py

from django import forms

from .models import Profile

class ProfileUpdateForm(forms.ModelForm):

 class Meta:

 model = Profile

 fields = ['bio', 'profile_picture']

And a view to handle this:

python

Copy code

accounts/views.py

from django.shortcuts import render, redirect

from .forms import ProfileUpdateForm

from django.contrib.auth.decorators import login_required

@login_required

def profile_view(request):

 profile, created = Profile.objects.get_or_create(user=request.user)

 if request.method == 'POST':

 form = ProfileUpdateForm(request.POST, request.FILES, instance=profile)

 if form.is_valid():

 form.save()

 return redirect('profile')

 else:

 form = ProfileUpdateForm(instance=profile)

 return render(request, 'accounts/profile.html', {'form': form, 'profile':

profile})

Create the template for displaying and updating profiles:

html

Copy code

<!-- accounts/templates/accounts/profile.html -->

{% extends 'base_generic.html' %}

{% block content %}

<h2>{{ user.username }}'s Profile</h2>

<form method="POST" enctype="multipart/form-data">

 {% csrf_token %}

 {{ form.as_p }}

 <button type="submit">Update Profile</button>

</form>

{% endblock %}

6. Create the Post Model

Now, create the Post model in the posts app. Each post should belong to a user and have a text content.

77

python

Copy code

posts/models.py

from django.db import models

from django.contrib.auth.models import User

class Post(models.Model):

 user = models.ForeignKey(User, on_delete=models.CASCADE)

 content = models.TextField()

 created_at = models.DateTimeField(auto_now_add=True)

 def __str__(self):

 return f"{self.user.username}'s post"

 class Meta:

 ordering = ['-created_at']

7. Create Views for Posts

Now create views to allow users to post content and display posts.

python

Copy code

posts/views.py

from django.shortcuts import render, redirect

from .models import Post

from django.contrib.auth.decorators import login_required

@login_required

def post_create(request):

 if request.method == 'POST':

 content = request.POST.get('content')

 if content:

 Post.objects.create(user=request.user, content=content)

 return redirect('post_list')

 return render(request, 'posts/post_create.html')

def post_list(request):

 posts = Post.objects.all()

 return render(request, 'posts/post_list.html', {'posts': posts})

8. Create Post Templates

For displaying posts and creating new ones, you need templates.

html

Copy code

<!-- posts/templates/posts/post_create.html -->

{% extends 'base_generic.html' %}

{% block content %}

<h2>Create a Post</h2>

<form method="POST">

 {% csrf_token %}

 <textarea name="content" placeholder="What's on your mind?"></textarea>

 <button type="submit">Post</button>

</form>

{% endblock %}

html

Copy code

<!-- posts/templates/posts/post_list.html -->

78

{% extends 'base_generic.html' %}

{% block content %}

<h2>All Posts</h2>

{% for post in posts %}

 <div>

 <h4>{{ post.user.username }}:</h4>

 <p>{{ post.content }}</p>

 <small>{{ post.created_at }}</small>

 </div>

{% endfor %}

{% endblock %}

9. Create the Follow System

For a simple follow/unfollow system, you can create a Follow model:

python

Copy code

accounts/models.py (continued)

class Follow(models.Model):

 user = models.ForeignKey(User, related_name='followers', on_delete=models.CASCADE)

 following = models.ForeignKey(User, related_name='following',

on_delete=models.CASCADE)

 def __str__(self):

 return f"{self.user.username} follows {self.following.username}"

Add views to follow and unfollow users:

python

Copy code

accounts/views.py (continued)

from .models import Follow

@login_required

def follow_user(request, username):

 user_to_follow = User.objects.get(username=username)

 if user_to_follow != request.user:

 Follow.objects.get_or_create(user=request.user, following=user_to_follow)

 return redirect('post_list')

@login_required

def unfollow_user(request, username):

 user_to_unfollow = User.objects.get(username=username)

 Follow.objects.filter(user=request.user, following=user_to_unfollow).delete()

 return redirect('post_list')

10. Add URLs for Follow Views

Now, set up the URLs for the follow/unfollow actions:

python

Copy code

accounts/urls.py

from django.urls import path

from . import views

79

urlpatterns = [

 path('profile/', views.profile_view, name='profile'),

 path('follow/<str:username>/', views.follow_user, name='follow_user'),

 path('unfollow/<str:username>/', views.unfollow_user, name='unfollow_user'),

]

11. Set Up URL Routing

Set up URLs for the post views in posts/urls.py:

python

Copy code

posts/urls.py

from django.urls import path

from . import views

urlpatterns = [

 path('', views.post_list, name='post_list'),

 path('create/', views.post_create, name='post_create'),

]Include these URLs in the main urls.py:
python

Copy code

social_media/urls.py

from django.contrib import admin

from django.urls import path, include

urlpatterns = [

 path('admin/', admin.site.urls),

 path('accounts/', include('accounts.urls')),

 path('posts/', include('posts.urls')),

]

``

	COURSE OUTCOMES (CO’s)
	PROGRAM EDUCATIONAL OBJECTIVES (PEOs)
	PROGRAM OUTCOMES (POs)
	PROGRAM SPECIFIC OUTCOMES (PSOs)
	--- DJANGO FRAME WORK LAB SYLLABUS
	List of Programs:
	List of Programs: (1)
	List of Programs: (2)
	List of Programs: (3)
	List of Programs: (4)
	-- COURSE OUTCOMES Vs PO’s & PSO’s

	SYLLABUS INDEX
	Instructions to students Pre-lab activities:
	In-lab activities:
	Post-lab activities:
	General Instructions:

	MODULE-1
	1A) AIM: Create Django environment setup and installation in windows/Linux
	DESCRIPTION:
	2) AIM :Create DJANGO project and app structure with django-admin commands
	3. AIM :Deployment of project in server
	1. What is Django and why is it used in web development?
	2. Can you explain the concept of "MTV" in Django?
	3. What are Django's main features?.
	4. How does Django handle URLs and routing in a web application?
	5. What are Django models, and how do they work?
	6. How do you create a Django project and a Django app?
	7. What is the role of Django templates?.
	9. What is Django’s Admin interface, and how can you customize it?
	10. How does Django handle forms and form validation?

	MODULE-2
	1. AIM : Create template in Django Project to process user interface
	2. AIM :Create multiple routes from using Django URL’s.
	3. AIM :Implement template inheritance with views and images.
	DESCRIPTION:
	1. What are Django templates?
	2. What is Django Template Language (DTL)?
	3. How do you pass data from views to templates in Django?
	4. What are template tags in Django?
	5. What are template filters in Django?.
	7. What is template inheritance in Django?
	8. How do you include other templates in a Django template?
	9. What are static files in Django templates, and how do you use them?

	2) AIM :Implement CRUD operations using django models
	4) AIM :Implement data rendering with templates and data routing.
	1. What is the role of Django models in web development?
	2. Explain the concept of Django ORM and how it relates to models.
	3. What are the different types of fields available in Django models, and how do they work?
	4. What is a ForeignKey in Django models, and how is it used to define relationships?
	5. What is the significance of the save() method in Django models?

	1. AIM :Create user registration and login authentication using Django forms
	1. What are dynamic forms in Django?
	2. How do you create a dynamic form in Django?
	3. What is a Django signal?
	4. How do you connect a signal to a model in Django?
	5. What are the common use cases for Django signals?

	MODULE-5
	DJANGO REST FRAMEWORK
	1. AIM :Install and configure Django Rest Framework Package.
	3. Create Django rest end points using Serializers and Models.
	4. Implement HTTP rest end points with all CRUD operations.
	1. What is Django Rest Framework (DRF)?
	2. What is a serializer in Django Rest Framework?
	4. How does Django Rest Framework handle authentication?
	5. What is a router in Django Rest Framework?
	DESCRIPTION :
	Steps to Build a Real-Time Collaborative Application:
	1. Setting up Django Project
	2. Install Django Channels
	3. Configure Channels in settings.py
	4. Create an ASGI Configuration
	5. Create a WebSocket Consumer
	6. Routing WebSocket Requests
	7. Creating a Frontend with WebSocket
	8. Views for Serving the Template
	9. Running the Application

	Steps to Set Up Django with Redis for Caching and Session Management
	1. Install Redis and Required Packages
	2. Configure Redis for Caching in Django
	Caching Configuration

	3. Configure Redis for Session Management
	Session Configuration

	4. Using Redis for Cache in Views
	5. Using Redis for Sessions

	Optional: Using Redis for Other Caching Features
	Full Example: Setting Up Redis with Caching and Session Management
	16. AIM :Develop a Multi-Tenant SaaS Application
	DESCRIPTION:
	Steps to Develop a Multi-Tenant SaaS Application in Django
	1. Create a Django Project and App
	2. Install Dependencies
	3. Configure settings.py
	4. Create Tenant Models
	5. Define Tenant-Aware Models
	6. Set Up URLs for Each Tenant
	7. Tenant-Specific Views
	8. Create Templates for Tenant Views
	9. Set Up URLs for Tenant-Specific Views
	10. Create the Tenant Database Schema
	11. Create a Tenant and Add Domain
	12. Tenant Middleware
	13. Run the Application

	DESCRIPTION: (1)
	Step-by-Step Code
	1. Setting Up Django Project and App
	2. Install Dependencies
	3. Configure settings.py
	4. Create User Profile Model
	5. User Registration and Profile Update
	6. Create the Post Model
	7. Create Views for Posts
	8. Create Post Templates
	9. Create the Follow System
	10. Add URLs for Follow Views
	11. Set Up URL Routing

