l n d- Institute of
€NAL " Engineering & Technology
An Autonomous Institution
Accredited by NAAC with * A” Grade, Accredited by NBA (ECE, CSE.EEE & MECH)
Approved by A.I.C.T.E. & Permanently Affiliated to J. N. T. U. Gurajada, VIZIANAGARAM
Via 5th APSP Battalion, Jonnada (V), Denkada (M), NH-3, Vizianagaram Dist - 535005, A.P. Website : www.lendi.org
Ph : 08922-241111, 241666, Cell No : 9490344747, 9490304747 ,e-mail : lendi_2008@yahoo.com

DJANGO FRAMEWORK

LABORATARY MANUAL
74 =)
f ',('.ée’\,ﬁN I)[9.55\
| A = 1)
D&’ \':‘ 4 f.\f’J \
'.\?” 5 VQ\“Q y
WNer o -y
W= o Ny
N Z W,
A = N
\tl;:, - ,\..' ‘»“\ :,
% SN
-~ (] b (_ - \=

CCINg nl\'*k

A (s
| I S',p Ahead inte Futuristc (o I

DEPARTMENT OF COMPUTER SCIENCE AND
INFORMATION TECHNOLOGY

Institute of
lendr Engineering & Technology

An Autonomous Institution

Accredited by NAAC with ” A’ Grade, Accredited by NBA (ECE, CSE.EEE & MECH)
ADDroved by A.I.C.T.E. & Permanently Affiliated to J. N. T. U. Gurajada, VIZIANAGARAM
Via 5th APSP Battalion, Jonnada (V), Denkada (M), NH-3, Vizianagaram Dist - 535005, A.P. Website : www.lendi.org
Ph : 08922-241111, 241666, Cell No : 9490344747, 9490304747, ,e-mail : lendi_2008@yahoo.com

DEPARTMENT OF COMPUTER SCIENCE AND INFORMATION TECHNOLGOY

VISION

To excel in computing arena and to produce globally competent computer science and
Information Technology graduates with Ethical and Human values to serve the society

MISSION

e To impart strong theoretical and practical background in computer science and
information technology discipline with an emphasis on software development.

e« To provide an open environment to the students and faculty that promotes
professional growth

e To inculcate the skills necessary to continue their education and research for

contribution to society.

*+ Institute of
lendr Engineering & Technology

An Autonomous Institution
Accredited by NAAC with * A’ Grade, Accredited by NBA (ECE, CSE.EEE & MECH)
Approved by A.I.C.T.E. & Permanently Affiliated to J. N. T. U. Gurajada, VIZIANAGARAM
Via 5th APSP Battalion, Jonnada (V), Denkada (M), NH-3, Vizianagaram Dist - 535005, A.P. Website : www.lendi.org
Ph : 08922-241111, 241666, Cell No : 9490344747, 9490304747 ,e-mail : lendi_2008@yahoo.com

COURSE OUTCOMES (CO’s)

CO1: Understand the environment of DJango Web Server Framework.

CO2: Create URL Mappings and Views using Templates.

COa3: Create DJango models for processing data from templates
CO4: Understand DJango Forms and Signals

CO5: Implement Restfull APIs using DJango Rest Framework

PROGRAM EDUCATIONAL OBJECTIVES (PEOQOSs)

PEO1: Graduates of Computer Science and Information Technology will acquire strong
knowledge to analyze, design, and develop computing products and solutions for real-life
problems utilizing the latest tools, techniques, and technologies.

PEO2: Graduates of Computer Science and Information Technology shall have
interdisciplinary approach, professional attitude and ethics, communication, teamwork skills
and leadership capabilities to solve social issues through their Employment, Higher Studies
and Research.

PEO3: Graduates will engage in life-long learning and professional development to adapt to
dynamically computing environment.

l d. Institute of
€NAL " Engineering & Technology
An Autonomous Institution

Accredited by NAAC with * A” Grade, Accredited by NBA (ECE, CSE.EEE & MECH)
ADDroved by A.I.C.T.E. & Permanently Affiliated to J. N. T. U. Gurajada, VIZIANAGARAM
Via 5th APSP Battalion, Jonnada (V), Denkada (M), NH-3, Vizianagaram Dist - 535005, A.P. Website : www.lendi.org
Ph : 08922-241111, 241666, Cell No : 9490344747, 9490304747 ,e-mail : lendi_2008@yahoo.com

PROGRAM OUTCOMES (POs)

PO1: Engineering Knowledge PO7: Environment & Sustainability
PO2: Problem Analysis PO8: Ethics

PO3: Design & Development PO9: Individual & Team Work
PO4: Investigations PO10: Communication Skills

PO5: Modern Tools PO11: Project Mgt & Finance
PO6: Engineer & Society PO12: Life Long Learning

PROGRAM SPECIFIC OUTCOMES (PSOs)

PSOL1: Ability to solve contemporary issues utilizing skills.

PSO2: To acquire knowledge of the latest tools and technologies to provide technical solutions
PSO3: To qualify in national and international competitive examinations for successful higher
studies and employment.

*+. Institute of
lendr Engineering & Technology

An Autonomous Institution

Accredited by NAAC with * A” Grade, Accredited by NBA (ECE, CSE.EEE & MECH)
Approved by A.I.C.T.E. & Permanently Affiliated to J. N. T. U. Gurajada, VIZIANAGARAM
Via 5th APSP Battalion, Jonnada (V), Denkada (M), NH-3, Vizianagaram Dist - 535005, A.P. Website : www.lendi.org
Ph : 08922-241111, 241666, Cell No : 9490344747, 9490304747 .e-mail : lendi_2008@yahoo.com

DJANGO FRAME WORK LAB SYLLABUS

Module 1: DJANGO FRAMEWORK- Introduction to DJango, Features of DJango, Application areas
of DJango, Flask vs DJango, DJango Components, Install and Configure DJango Components.

List of Programs:
1. Create DJango environment setup and installation in Windows/Linux. (L5)
2. Create DJango Projct and app structure with django-admin commands. (L5)
3. Deployment of Project in server. (L2)

Module 2: DJANGO TEMPLATES: URLs, Views, Static Files, Images, Forms, Application
development using Templates, Template Objects, tags, Filters, Loops and Inheritance.

List of Programs:
1. Create template in DJango Project to process user interface. (L5)
2. Create multiple routes from using Django URLS. (L5)
3. Implement template inheritance with views and images. (L3)

Module 3: DJANGO MODELS: Introduction to DJango Models, Admin Panel, Database
Relationships, One-One, One- Many, Many-Many, Model Queries, Rendering Data to Templates,
Dynamic URLs and Routing, CRUD operations.

List of Programs:
1. Create database configuration in DJango admin with Sqlite3. (L5)
2. Implement CRUD operations using Django models. (L3)
3. Implement database relationships using django models. (L3)
4. Implement data rendering with templates and dynamic routing. (L3)

Module 4: DYNAMIC FORMS & SIGNALS: Inline Form sets, Search Forms, User Registration and
Login Authentication, User Roles & Permissions, User Profiles, Image Upload, DJango Signals,
Creating customer profiles with DJango.
List of Programs:

1. Create user registration and login authentication using django forms. (L5)

2. Implement the roles and permissions for user profile. (L3)

5

3. Implement Django signal for user profiles. (L3)

Module 5 : DJANGO REST FRAMEWORK: Introduction to DJango Rest Framework, Features of
Rest APIs, Installation of DJango Rest Framework, api_view, Response, JSONResponse, Models and
Serializers, PATH and urlpatterns, HTTP methods GET, POST, PUT and DELETE methods

List of Programs:
1. Install and configure DJango Rest framework package. (L2)

2. Create django rest end points using api_view and JSONResponse. (L5)
3. Create Django rest end points using Serializers and Models. (L5)
4. Implement HTTP rest end points with all CRUD operations. (L3)

l d. Institute of
€NAL " Engineering & Technology
An Autonomous Institution

: Accredited by NAAC with ” A” Grade, Accredited by NBA (ECE, CSE.EEE & MECH)
Approved by A.l.C.T.E. & Permanently Affiliated to J. N. T. U. Gurajada, VIZIANAGARAM
Via 5th APSP Battalion, Jonnada (V), Denkada (M), NH-3, Vizianagaram Dist - 535005, A.P. Website : www.lendi.org
Ph : 08922-241111, 241666, Cell No : 9490344747, 9490304747 ,e-mail : lendi_2008@yahoo.com

COURSE OUTCOMES Vs PO’s & PSO’s

PO(1..12) PSO(1..3)
SNO DEERIPYSN MAPPING MAPPING
SC3201.1 | Understand the environment of DJango | PO2,PO3 PSO1,PSO2
Web Server Framework.
SC3201.2 | Create URL Mappings and Views using | PO3,PO11 PSO1
Templates.
SC3201.3 | Create DJango models for processing data | PO3,PO11 PSO2
from templates
SC3201.4 | Understand DJango Forms and Signals PO1,PO6 PSO1
SC3201.5 | Implement Restfull APIs using DJango | PO3,PO6 PSO2
Rest Framework
SC3201.* | Able to analyze the real world problem and | PO1,PO2,PO3,PO5 | PSO1,PSO2
implement using Restfull APIs Developing | PO6,PO11 PSO3
The applications that relates to Services
which are Enterprise.

COURSE OVERALL PO/PSO MAPPING:

lendr

Institute of

Engineering & Technology
An Autonomous Institution

Accredited by NAAC with " A” Grade, Accredited by NBA (ECE, CSE.EEE & MECH)

Approved by A.I.C.T.E. & Permanently Affiliated to J. N. T. U. Gurajada, VIZIANAGARAM
Via 5th APSP Battalion, Jonnada (V), Denkada (M), NH-3, Vizianagaram Dist - 535005, A.P. Website : www.lendi.org
Ph : 08922-241111, 241666, Cell No : 9490344747, 9490304747 ,e-mail : lendi_2008@yahoo.com

SYLLABUS INDEX

. Mapping
Mapping .
SNO PROGRAM DESCRIPTION Page No . with POs
with COs
and PSOs
1 Create DJango environment setup and 11 CO2 PO1,PSO1
installation in Windows/Linux.
) Create DJango Project and app structure with 11-12 coz PO1,PO2,
django-admin commands. PSO1
3 Deployment of Project in server. L Ccoz Poplsg?Z
4 Create template in DJango Project to process 17-21 coz PO1,PO2,
user interface. PO3,PSO1
5 Create multiple routes fromusing Django 22-23 il POLPO?,
URLS PO3,PSO1
Implement template inheritance with views 23-24 C01,C02 PO1,PO2,
6 and images. PSO1
7 Create database configuration in DJango 27-28 CO1,c0o2 PO1,POZ,
admin with Sqlite3. PSO1
Implement CRUD operations using Django 29-32 C01,C02 PO1,PO2,
8 models. PSO1
| i : b 33-34 C01,C02 PO1,PO2,
9 mplement database relationships using B 2 POl
django models. :
Implement data rendering with templates and 35-36 C01,Cc0o2 PO1,PO2,
10 dynamic routing. PO3,PSO1
Create user registration and login 38-46 C01,Cc02 PO1,PO2,
11 | authentication using django forms. PO3,PSO1
Implement the roles and permissions for user 48 C01,C02 PO1,PO2,
12 | profile. PSO1

49-51 C01,C0O2 PO1,PO2,
13 | Implement Django signal for user profiles. PO3,PSO1
PROGRAMS BEYOND SYLLABUS
61 C01,C02,C | PO1,PO2,
14 | Real-Time Collaborative Application with 03,£04,C05 | PO3,POLL
Django and WebSockets ,CO6 PSO1,PS
02
. . . : : 69 C01,C02,C | PO1,PO2
Django with Redis for Caching and Session ’ ’ o
15 | -aando Wit Redl o ! 03,C04,CO5 | PO3,PSO1
Management
,CO6 PSO2
OPEN ENDED EXPERIMENTS
16 | Develop a Multi-Tenant SaaS Application 70
17 | Create a Social Media Platform with Django 74

*+. Institute of
lendr Engineering & Technology

An Autonomous Institution

. Accredited by NAAC with ” A” Grade, Accredited by NBA (ECE, CSE.EEE & MECH)
Approved by A.l.C.T.E. & Permanently Affiliated to J. N. T. U. Gurajada, VIZIANAGARAM

Via 5th APSP Battalion, Jonnada (V), Denkada (M), NH-3, Vizianagaram Dist - 535005, A.P. Website : www.lendi.org

Ph : 08922-241111, 241666, Cell No : 9490344747, 9490304747 e-mail : lendi_2008@yahoo.com

Instructions to students

Pre-lab activities:

Prepare observation note book which contains the following :
e Procedure/algorithm/program to solve the problems discussed in the theory class
e Solutions to the exercises given in the previous lab session

Refer the topics covered in theory class

In-lab activities:

Note down errors observed while executing program and remedy for that.
Note down corrections made to the code during the lab session

Answer to vivo-voce

Get the observation corrected

Note down inferences on the topic covered by the programs executed

Post-lab activities:

Solve the given exercises

Devise possible enhancements that can be made to the solved problem to simplify the logic
Executed programs should be recorded in the lab record and corrected within one week after
completion of the experiment.

After completion of every module, a test will be conducted, and assessment results will have
weight in the final internal marks.

General Instructions:

Student should sign in the log register before accessing the system.

Student is only responsible for any damage caused to the equipment in the laboratory during his
session.

Usage of pen drives is not allowed in the lab.

If a problem is observed in any hardware equipment, please report to the lab staff immediately;
do no attempt to fix the problem yourself.

Systems must be shut down properly before leaving the lab.

Please be considerate of those around you, especially in terms of noise level. While labs are a
natural place for conversations regarding programming, kindly keep the volume turned down

10

MODULE-1
1A) AIM: Create Django environment setup and installation in windows/Linux
DESCRIPTION:
e First go to search bar and search CMD
e Move E drive by using command e: enter
e Thenwe get E:\>
e Create afolder by using cmd : mkdir <folder name> (press enter)
e Move to folder using cmd : cd <folder name> (press enter)

OUTPUT: E:\<FOLDER NAME>>

A =

1/13/2018 =

2) AIM :Create DJANGO project and app structure with django-
admin commands

DESCRIPTION :

To know commands of django use cmd : >django-admin Output
C:\Users\lendi>django-admin
Type 'django-admin help <subcommand>' for help on a specific subcommand.
Available subcommands: [django]
e check

e compilemessages

11

createcachetable

12

enter)

dbshell
e diffsettings
e dumpdata
o flush
e inspectdb
e loaddata
e makemessages
e makemigrations
e migrate
e optimizemigration
e runserver
e sendtestemail
e shell
e showmigrations
e sqlflush
e sglmigrate
e sglsequencereset
e squashmigrations
e startapp
e startproject
o fest
e testserver
These are the commands available in django
Steps to create project :
E:/<folder-name>>django-admin startproject <project name> (press enter)
Steps for creating app inside project :
E:\\<FOLDER-NAME>> cd <project name> (press enter)
E:\<FOLDER-NAME>/<project name> django-admin startapp <app name=> (press

13

OUTPUT :
C:\Users\lendi>e:
E:\>mkdir django5b1
E:\>cd django5bl
E:\django5b1>django-admin startproject lendi
E:\django5bl>cd lendi
E:\django5b1\lendi>django-admin startapp cse
GO TO SUBLIME TEXT (OR) VISUAL STUDIO CODE:

Drag the file lendi and drop in sublime text :

a untitled (lendi) - Sublime Text (UNREGISTERED)] X
File Edit Selection Find View Goto Tools Project Preferences Help

FOLDERS
lendi

migrations
/% _init_.py
* admin.py
/% apps.py

* models.py
/% tests.py

* views.py

lendi

/* manage.py

[tine 1, Column 1 Tab Size: 4 Plain Text

= LR = 1506
L Type here to search [i - = | =3 @ 34°C Mostlysunny A~ E1 ENG 31-03-2023 B

3. AIM :Deployment of project inserver
DESCRIPTION:
Steps for deployment

e Usingcmd : E:\django5b1\lendi>python manage.py runserver

14

x 4+
= o x

st x| B Django Tutoa Par 111 Depleyi 3 @ Tne s worked successuty

G di il windows - Google X | ee.
@S Command Prompt - python manage.py runserver

~

|8 djangoinatail.png

E L Type here to search @

Using : http://127.0.0.1:8000/ run server

in‘chromeOUTPUT : 7

G django install windows - Google X | 36 Django Introduction and Installa' X | B Diengo Tutorial Part 11: Deployi: X = @ The install worked success!ul\);!\ X |+
€ > C @ 127.001:8000 e %« O &
django View release notes for Django 4.1
A
b
The install worked successfully! Congratulations!
You are seeing this page because DEBUG=True is in your
settings file and you have not configured any URLs.
Q Django Documentation ¢y Tutorial: A Polling App 2o Django Community
= Topics, references, & how-to's Get started with Django Connect, get help, or contribute
Activate Windows
Go to Settin: ac s,
~ Showall X

[8] djangoinatall.png

H L Type here to search @ N |
s s 1 B
J A W)

15

VIVA QUESTIONS :

1.

2.

3.

8.

9.

What is Django and why is it used in web development?
Can you explain the concept of "MTV" in Django?

What are Django's main features?.

. How does Django handle URLs and routing in a web application?
. What are Django models, and how do they work?

. How do you create a Django project and a Django app?

. What is the role of Django templates?.

What is the purpose of the settings.py file in Django?

What is Django’s Admin interface, and how can you customize it?

10. How does Django handle forms and form validation?

16

MODULE-2

1. AIM : Create template in Django Project to process user interface

DESCRIPTION: Step 1: connect to drive
>D:
Step 2: create project

D:/>django-admin startproject emp

®)at

N ENG o 2027
A @ T RO L uom®@

Step 4: creating app inside project
D:/>django-admin startproject employee

Step 5: open folder in sublime text or visual studio

17

” File Edit View Git Project Tools Extensions Window Help Search (Ctrl+Q)

i - e =] B2 531 P SelectStartup ltem... ~ =

ol

Solution Explorer - Folder View
af -6 =

Search Solution Explorer - Folder View (Ctrl+;)

——emp-idange—tatiemp
B emp
B _init_py
B asgipy
B settings.py
B urlspy
B wsgipy
4 [employee
b Bl migrations
B _init_py
B adminpy
B appspy
b models.py
B testspy
B viewspy
B manage.py

Solution Explorer G

Step 6: create template inside employee
Click on employee new ->new folder-> name it as templates
Step 7: Create employee as folder inside template

Templates-> new-> new folder-> employee

18

Document1 (AutoRecovered) [Compatibility Mode] - Word

Window Search (Ctrl+Q)

ct Startup Item... ~

Search Solution Explorer - Folder View (Ctrl+)
4 B emp (D:\django-lali\emp)
4 @ emp
B _init_py
B asipy
B settings.py
B urlspy
B wsgipy
4 [employee
P B migrations
4 [Templates
employee
B _init_py

B adminpy

B testspy
B viewspy
B fionace oy

Solution Explorer

Step 8: move to employee- apps.py-copy EmployeeConfig
Step 9:in emp go to settings.py-

emp

pathlib
os

BASE_DIR = Path(__file__).resolve().parent.parent

SECRET_KEY =

DEBUG =

ALLOWED_HOSTS

EIINSTALLED_APPS =

» - > 2056
£ search \ el N T DD 00000 @

19

Step 10:in employee->templates->employee-> create Home.html(new file)

In Home.html write a basic html code

<html>

<head>

<title></title>

</head>

<body>

<h1> Welcome </h1>

</body>

</html>

Step 11: employee->views.py
Add code

def emphome(request):
return render(request,’employee/Home.html')

Step 12: in employee create urls.py(new file)

from django.contrib import admin
fromdjango.urls import path,include
from.import views

urlpatterns = [
path(‘home/',views.emphome),

]

Save changes
Step 13: in emps->urls.py Add code

from django.contrib import admin
fromdjango.urls import path,include

urlpatterns = [
path(‘admin/', admin.site.urls),
path(",include('employee.urls"))

]

Step 14: save changes
Step 15: go cmd for running server
D:\django\emp>python manage.py runserver

Copy http://127.0.0.1:8000/

Goto chrome and run server http://127.0.0.1:8000/home/

20

OUTPUT :

© (3) WhatsApp X DentCare Free Website Ten X | @ DentCare - Dental Clinic W X | () Sloodshare111/bloodshar= X | M (no subject) - lalithasagar: X @ 127.0.0.1:8000/nome/ x 4+
<« C © 127.0.0.1:8000/home,

Welcome

2. AIM :Create multiple routes from using Django URL’s.
DESCRIPTION: urls.py file in your app's

Step 1: To create a new URL route in Django, you'll need to edit the
directory. This file contains a list of URL patterns that the Django router uses to match
incoming requests to view functions.(for same project as in module-2.1)

Step 2: in views.py add code

from django.shortcuts import render
fromdjango.http import HttpResponse

def home(request):
return HttpResponse("Hello, world!")

def about(request):
return HttpResponse("'<h1> WElcome to home page™)

Create your views here.

Step 3: inemployee->urls.py
Add routes

from django.contrib import admin
fromdjango.urls import path,include

urlpatterns = [
path(‘admin/', admin.site.urls),
path(‘home/',include('employee.urls'))

1
Step 4: emp->urls.pyfrom django.contrib
import admin fromdjango.urls

import path,include from.import views
urlpatterns = [
path(", views.home),

21

]

path(‘about/', views.about),

22

In this code, we've imported the path function from the django.urls module, as well as two view
functions from our app's views.py file. We've then defined a list of URL patterns using the
urlpatterns variable.

The first URL pattern, path(", views.index, name="index"), maps the root URL of our app
(i.e., http://localhost:8000/) to the index view function. The name parameter is an optional
identifier that we can use to refer to this URL pattern later in our code.

The second URL pattern, path(‘about/', views.about, name="about’), maps the URL
http://localhost:8000/about/ to the about view function. This demonstrates how you can create
a sub-URL within your app, by appending a unique path segment to the root URL.

Let's take a closer look at how view functions work in Django.

View functions are Python functions that take an incoming request as their first parameter,
and return an HTTP response. They are responsible for rendering HTML templates,
interacting with models and databases, and processing user input.

Here's an example views.py file that defines the two view functions used in the urls.py file
above:

pythonCopy code

from django.shortcuts import render from django.http import HttpResponse def
index(request): return HttpResponse(""Hello, world!") def about(request): return
render(request, ‘about.html’)

In this code, we've imported two functions from the django.shortcuts and django.http
modules: render and HttpResponse. We've then defined two view functions that correspond
to the URL patterns in our urls.py file.

The index function simply returns an HTTP response containing the text "Hello, world!" This
demonstrates the most basic type of view function, which doesn't use any HTML templates or
interact with databases.

The about function, on the other hand, uses the render functionto generate an HT TP response
containing the contents of an HTML template. The render function takes two parameters: the
incoming request, and the name of the template file to be rendered. In this case, we're
rendering a template called about.html, which should be stored in our app's templates
directory.

Step 5:
Save changes and runserver
>python manage.py run server

http://127.0.0.1:8000/

http://127.0.0.1:8000/home/

23

© G)Whatsapp X |) Bloodsharel! X | DentCareFre- X | M Spam () -lal X | (M Howtoperfor X | @ Telegram Web X Diangoroute: X | G Inthiscode,v X @ 127.00.1:800 X
< C ©® 127.0.0.1:8000/home

Hello. world!

http://127.0.0.1:8000/home/about/

© G)Whatsapp X | €) Bloodsharelt X | DentCare Frec X | M Spam (1) -1sl X | B Howtoperfor X | € Telegram Web X Djangoroute: X | G Inthiscode, v X @ 127.00.1:8000 X
<« C ® 127.0.0.1:8000/home/about

WElcome to home page

3. AIM :Implement template inheritance with views and images.

DESCRIPTION:
To load images, we have to create static app .
Step 1: Inemp we have to create new folder named static.
Step 2: in static folder we have to add images folder.
Step 3: In images folder we have to add a.png file.
Step 4: in settings.py we have to load static and images.

STATIC_URL = 'static/*

MEDIA URL="images/'

STATICFILES_DIRS=[
os.path.join(BASE_DIR,'static’)

Step 5: In home.html add code for image

<IDOCTYPE html>

{% load static %}

<html>

<head>

<title></title>

</head>

<body>

</body>

</html>

Step 6: save changes

Step 7: runserver

24

django B

25

VIVA QUESTIONS

1. What are Django templates?

2. What is Django Template Language (DTL)?

3. How do you pass data from views to templates in Django?
4. What are template tags in Django?

5. What are template filters in Django?.

6. What is the purpose of the {3 block %} tag in templates?

7. What is template inheritance in Django?
8. How do you include other templates in a Django template?

9. What are static files in Django templates, and how do you use them?

10. What is the {3 extends %} tag in Django templates?

26

MODULE-3

1) AIM : Create database configuration in Django admin with

DESCRIPTION:

sqlite3. Step 1: Create a new project and make all steps that are mentioned in
previous modulesStep 2: Here | have taken app named charity
Inthat I want add donors data base — in models.py

from django.db import
models from django.utils
import timezoneclass
Donate(models.Model):
donationType = models.CharField(max_length =200)
donationAmount = models.FloatField(null=True)
donationDate = models.DateTimeField(auto_now_add=timezone.now())

Step 3: in admin.py

from django.contrib
import adminfrom
.models import Donate
admin.site.register(Dona
te)

Step 4: incmd we perform migrations
> python manage.py makemigrations

This will create a new directory called migrations inside your app directory with the initial
migration files.

Step 5: > python manage.py migrate
Step 6: we have to create users for that we use command

> python manage.py createsuperuser

Then it will ask details like

27

® WhatsApp x | [Configuring Diangowith G X = @ Login | Django site admin X | = vy = o X

¢ C @ 127.0.0.1:8000/admin/login/znext=/admin/

Django administration

Username:

[]

Password:

D search

Login using user details.

Step 8: after logging in we are directed to site administartion

® WhatsaApp X | () Configuring Django with SQLite X @ Site administration | Django site X 4

v = o X
€ > C O 127.00.1:8000/admin/

Django administration

WELCOME, Hil, VIE / CHANGE PASSWORD / LOG OUT

Site administration

: e Recent actions
Groups + Add Ch
Users + Add My actions

None available

Donates

28

2) AIM :Implement CRUD operations using django models

DESCRIPTION :
Here's anexample of how you can implement CRUD operations using Django models:
Let's say we have a model called Book that has the following fields:

from django.db import models

Book(models.Model):

title = models.CharField(max_length=255)

author = models.CharField(max_length=255)
publication_date = models.DateField()

price = models.DecimalField(max_digits=5, decimal places=2)

To perform CRUD operations on this model, we can define views that correspond to each
operation.

Create

To create a new Book instance, we can define a view that handles a POST request to a URL
like /books/new/. The view should take the form data submitted with the POST request and
use it to create a new Book instance:

from django.shortcuts import render, redirect
from .models import Book
from .forms import BookForm
create_book(request):
if request.method == 'POST"
form = BookForm(request.POST)
if form.is_valid():
form.save()
return redirect('book _list)
else:

form = BookForm()

return render(request, 'book form.html', {'form': form})

29

Here, we're using a Django ModelForm to generate an HTML form based on the Book
model. If the form is submitted with valid data, we save the form data as a new Book instance
and redirect the user to a page that lists all the books.

Read

To retrieve a list of all Book instances, we can define a view that handles a GET request to a
URL like /books/. The view should query the database for all Book instances and pass them
to a template for rendering:

from django.shortcuts import render

from .models import Book

def book_list(request):
books = Book.objects.all()

return render(request, 'book_list.html', {'books": books})

Here, we're using the Django ORM's all() method to retrieve all Book instances from the
database. We're then passing the list of books to atemplate called book _list.html, which will
render each book in a table row.

To retrieve a single Book instance, we can define a view that handles a GET request to a
URL like /books/<int:pk>/. The pk parameter is the primary key of the Book instance we
want to retrieve. We can query the database for the Book instance with this primary key and
pass it to a template for rendering:

from django.shortcuts import render, get_object_or_404

from .models import Book

defbook_detail(request, pk):
book = get_object_or_404(Book, pk=pk)

return render(request, 'book detail.html', {'book’: book})

30

Here, we're using the Django ORM's get_object_or_404() function to retrieve the Book
instance with the given primary key. If the instance doesn't exist, the function will raise a
Http404 exception. We're then passing the Book instance to a template called
book_detail.html, which will render the book's details.

Update

To update an existing Book instance, we can define a view that handles a POST request to a
URL like /books/<int:pk>/edit/. The view should retrieve the Book instance with the given
primary key, update its fields with the form data submitted with the POST request, and save
the updated instance to the database:

from django.shortcuts import render, redirect, get_object_or_404
from .models import Book
from .forms import BookForm
update_book(request, pk):
book = get_object_or_404(Book, pk=pk)
if request.method == 'POST":
form = BookForm(request.POST, instance=book)
if form.is_valid():
form.save()
return redirect('book_list’)
else:

form = BookForm(instance=book)

return render(request, 'book form.html', {'form': form})

Here, we're using a Django "ModelForm' to generate an HTML form based on the "Book™
instance we want to update. If the form is submitted with valid data, we save the updated
form data to the existing ‘Book" instance and redirect the user to a page that lists all the
books.

Delete

31

To delete an existing "Book" instance, we can define a view that handles a POST request to a
URL like “/books/<int:pk>/delete/". The view should retrieve the "Book" instance with the
given primary key and delete it from the database:

from django.shortcuts import render, redirect, get_object_or_404

from .models import Book

defdelete_book(request, pk):
book = get_object_or_404(Book, pk=pk)
if request.method == 'POST"
book.delete()

return redirect('book_list’)

return render(request, 'book _confirm_delete.html’, {'book’: book})

Here, we're using the “delete()” method onthe "Book™ instance to delete it from the database.
If the request method is POST (i.e. the user has confirmed the deletion), we delete the
instance and redirect the user to a page that lists all the books. If the request method is GET,
we render a confirmation page that asks the user to confirm the deletion.

32

3) Implement database relations using Django models

you can implement database relations using Django models with different types of
relationships:

One-to-Many Relationship

A one-to-many relationship is a relationship in which a single instance of one model is
related to multiple instances of another model. In Django, this is represented by a ForeignKey
field on the many-side model.

Let's say we have a Book model and an Author model, and each book is written by a single
author:

Import models

Author(models.Model):

name = models.CharField(max_length=255)

Book(models.Model):
title = models.CharField(max_length=255)

author = models.ForeignKey(Author, on_delete=models.CASCADE)

Here, the Book model has a ForeignKey field called author that refers to an instance of the
Author model. The on_delete argument specifies what should happen to the Book instances if
the related Author instance is deleted. In this case, we're using models.CASCADE, which
means that if an Author instance is deleted, all related Book instances will also be deleted.

Many-to-Many Relationship

A many-to-many relationship is a relationship in which each instance of one model can be
related to multiple instances of another model, and vice versa. In Django, this is represented
by a ManyToManyField on both models.

from django.db import models
Genre(models.Model):
name = models.CharField(max_length=255)

Book(models.Model):

title = models.CharField(max_length=255)

genres = models.ManyToManyField(Genre)

Let's say we have a Book model and a Genre model, and each book can belong to multiple
genres

33

Here, the Book model has a ManyToManyField called genres that refers to instances of the
Genre model. The genres field creates a many-to-many relationship between Book and Genre
instances.

One-to-One Relationship
A one-to-one relationship is a relationship in which each instance of one model is related to

exactly one instance of another model, and vice versa. In Django, this is represented by a
OneToOneField on one of the models.
Let's say we have a Book model and a Publisher model, and each book is published by a

single publisher:

from django.db import models

Publisher(models.Model):

name = models.CharField(max_length=255)
Book(models.Model):

title = models.CharField(max_length=255)

publisher = models.OneToOneField(Publisher, on_delete=models. CASCADE)

Here, the Book model has a OneToOneField called publisher that refers to an instance of the
Publisher model. The publisher field creates a one-to-one relationship between Book and
Publisher instances.

34

4) AIM :Implement data rendering with templates and data routing.
DESCRIPTION :Here's an example of how to render data using Django templates and routing:
Routing

To route URLs in Django, you can define URL patterns ina urls.py file. Here's an example
urls.py file for a simple blog app:

from django.urls import path

from . import views

urlpatterns = [
path(", views.post_list, name="post_list’),

path('post/<int:pk>/', views.post_detail, name="post_detail’),

Here, we're defining two URL patterns: one for the list of blog posts ("), and one for the detail
view of a single post (‘post/<int:pk>/"). The int:pk part of the second pattern means that
Django will match an integer and assign it to the pk argument of the view function.

Rendering Data with Templates
To render data ina Django template, you can use template tags and filters. Here's an example
post_list.ntml template that renders a list of blog posts:

{% extends 'base.html’ %}
{% block content %}
<h1>Blog Posts</h1>
{% for post in posts %}
<h2>{{ post.title }}</h2>
<p>{{ post.content }}</p>
{% empty %}
<p>No posts yet.</p>
{% endfor %}

{% endblock %}

35

Here, we're using the extends template tag to extend a base template, and the block template
tag to define a content block that will be filled in by the child template. We're using the for
template tag to loop over a list of Post objects, and the url template tag to generate a URL for
the detail view of each post. Finally, we're using the empty template tag to display a message
if there are no posts.

Here's an example post_detail.html template that renders the detail view for a single post:

{% extends 'base.html' %}

{% block content %}
<h1>{{ post.title }}</h1>
<p>{{ post.content }}</p>

{% endblock %}

Here, we're again using the extends template tag to extend a base template, and the block
template tag to define a content block. We're using the {{ }} syntax to display the title and
content of the Post object passed to the template context.

Views.py
Finally, we need to define the views that will render these templates and provide data to

them. Here's an example views.py file:

from django.shortcuts import render, get_object_or_404

from .models import Post

post_list(request):
posts = Post.objects.all()
return render(request, ‘post_list.html', {'posts": posts})

post_detail(request, pk):

post = get_object_or_404(Post, pk=pk)

return render(request, 'post_detail.html', {'post’: post})

36

VIVA QUESTIONS
1. What is the role of Django models in web development?
2. Explain the concept of Django ORM and how it relates to models.

3. What are the different types of fields available in Django models, and how do they
work?

4. What is a ForeignKey in Django models, and how is it used to define relationships?

5. What is the significance of the save () method in Django models?

37

MODLE-4

1. AIM :Create user registration and login authentication using Django forms

DESCRIPTION

e The project Employee management system(EMS) has basically two important pages
o Registration page
o Login page

e The project directory structure looks like

The important files here are

1. Urls.py 2EMS

from django.contrib import admin
fromdjango.urls import path,include

urlpatterns = [
path(‘admin/', admin.site.urls),
path(",include('Employee.urls")),

]

2. Urls.py 2> Employee app

fromdjango.urls import path,include

38

from. import views

urlpatterns = [
path(‘register/',views.Register),
path(‘register/user/',views.User),
path('login/',views.Login),
path('login/validateuser/',views.validate),

]

3. Views.py - Employee app

from django.shortcuts import render,redirect
from Employee.models import Employee
from django.contrib import messages

def Register(request):
return render(request, Employee/register.html’)

def Login(request):
return render(request,'Employee/login.html’)

def User(request):
if request.method =='POST":
eid=request.POST['eid']
email=request.POST['mail']
ename=request.POST['ename’]
id=Employee.objects.all().count()+1
flag=Employee.objects.filter(eid=eid).count()
if(flag!=1):
Employee(id,eid,email,ename).save()
return render(request,'Employee/userpage.html’,{'name'.ename})
else:
messages.error(request, 'User already exists')
return redirect('/register")

def validate(request):
if request.method =='POST":

eid=request.POST['eid']
email=request.POST['mail]
flag=Employee.objects.filter(eid=eid,email=email).count()
if(flag==1):

row=Employee.objects.filter(eid=eid,email=email)

for i in row:

name=i.ename
return render(request,'Employee/userpage.html',{'name':name})

else:
messages.error(request, 'Invalid id or mail')

return redirect('/login’)

4. register.ntml > templates=>Employee

{% load %}
<l html>
< lang="en">
< >

charset="UTF-8">

http-equiv="X-UA-Compatible" content="IE=edge">

name="viewport" content="width=device-width, initial-scale=1.0">
>register</title>

< href="https://cdn.jsdelivr.net/npm/bootstrap@5.3.0-
alphal/dist/css/bootstrap.min.css” rel="stylesheet" integrity="sha384-
GLhITQ8IRABAZLI6O30VMWSktQOp6bh71n1Z13/Ir59b6EGGollaFkw7cmDAGj6gD™
crossorigin="anonymous">

rel="stylesheet" href="{% static 'Employee/styleRegister.css' %}">

<
<
<
<

class="container-fluid" id="signup">
< class="p-5" action="user/" method="post">
{% csrf_token %}
<div class="mb-3">
< for="eid" class="form-label">Employee Id</ >
< type="text" placeholder="your id" class="form-control" id="eid" name="eid"
required>
</div>
<div class="mb-3">
< for="mail" class="form-label">Email address</ >
< type="email" placeholder="your email" class="form-control" id="mail"
name="mail" required>
</div>
<div class="mb-3">
< for="ename" class="form-label">Name</ >
< type="text" placeholder="name" class="form-control" id="ename"
name="ename" required>
</div>
< type="submit" class="btn btn-secondary">Register</
<div class="mb-3">

40

https://cdn.jsdelivr.net/npm/bootstrap%405.3.0-

< class="p-3">Are you already a user <a href="/login" class="mx-
2">login</label>
</div>
<div class="mb-3">
<p style="color:firebrick;text-align: center; font-weight: bold; font-
family:cursive;">{% for in %}
{{ 1
{% endfor %}</p>
</div>
</ >
</div>

< src="https://cdn.jsdelivr.net/npm/bootstrap@5.3.0-
alphal/dist/js/bootstrap.bundle.min.js" integrity="sha384-
w76 AqPfDkMBDX030jS1Sgez6pr3xsMIQ1ZAGC+nuZB+EYdgRZgiwxhTBTKF7CXvN™
crossorigin="anonymous"></ >
</ >
</ >

5. styleRegister.css - static >Employee

#signup{
margin-top: 50px;
¥

#signup {
width: 35%;
margin-left: auto;
margin-right: auto;
background-color: aliceblue;
box-shadow: 2px 3px 3px 1px black;
border-radius: 10px;

¥

#signup {
font-size: medium;

font-family: "Times New Roman', Times, serif;

}

6. login.html - templates=>Employee

{% load %}
<l html>
< lang="en">
< >
charset="UTF-8">

https://cdn.jsdelivr.net/npm/bootstrap%405.3.0-

< http-equiv="X-UA-Compatible™ content="IE=edge">

< name="viewport" content="width=device-width, initial-scale=1.0">

<title>login</title>

< href="https://cdn.jsdelivr.net/npm/bootstrap@5.3.0-
alphal/dist/css/bootstrap.min.css™ rel="stylesheet" integrity="sha384-
GLhITQ8IRABAZLI6030VMWSktQOp6b7In1ZI3/Ir59b6EGGollaFkw7cmDAGj6gD™
crossorigin="anonymous">

rel="stylesheet" href="{% static 'Employee/styleLogin.css' %}">

class="container-fluid py-5" id="login">
<p>Login here</p>
< action="validateuser/" method="post" class="p-5">
{% csrf_token %}
<div class="mb-3">
< for="eid" class="form-label">Employee id</ >
< type="text" placeholder="1d" class="form-control" id="eid" name="eid"
required>
</div>
<div class="mb-3">
< for="mail" class="form-label">Email</ >
< type="email" placeholder="mail" class="form-control" id="mail"
name="mail" required>
>
< type="submit" class="btn btn-secondary">Login</ >
<div class="mb-3">
< class="p-3">Are you a new user <a href="/register" class="mx-
2">signup</label>
</div>
<div class="mb-3">
<p style="color:firebrick;text-align: center; font-weight: bold; font-
family:cursive;">{% for in %}
i s
{% endfor %}</p>
</div>
</ p
</div>

< src="https://cdn.jsdelivr.net/npm/bootstrap@5.3.0-
alphal/dist/js/bootstrap.bundle.min.js" integrity="sha384-
W76AqPfDKMBDX030jS1Sgez6pr3x5MIQ1ZAGC+nuZB+EYdgRZgiwxhTBTKF7CXvN"
crossorigin="anonymous"></ >
</ p
</ p

7. styleLogin.css—> static=> Employee

https://cdn.jsdelivr.net/npm/bootstrap%405.3.0-
https://cdn.jsdelivr.net/npm/bootstrap%405.3.0-

#login{
margin-top: 50px;
}
#login {
width: 35%;
margin-left: auto;
margin-right: auto;
background-color: aliceblue;
box-shadow: 2px 3px 3px 1px black;
border-radius: 10px;
}
#login {
font-size: medium;
font-family: "Times New Roman’, Times, serif;

}

#login p{
font-size: 17px;
font-family:Arial, Helvetica, sans-serif;
text-align: center;

¥

8. Models.py

fromdjango.db import models

class Employee(models.Model):
eid=models.CharField(max_length=20)
email=models.CharField(max_length=50)
ename=models.CharField(max_length=20)

9. admin.py

from django.contrib import admin
from .models import Employee

admin.site.register(Employee)

10. userpage.html

43

html>
lang="en">
>

charset="UTF-8">

http-equiv="X-UA-Compatible" content="IE=edge">

name="viewport" content="width=device-width, initial-scale=1.0">
>Document</title>

<h1>hello {{ H</h1>
>

D:\django\Ems>python manage.py runserver

Copy http://127.0.0.1:8000/

Goto your browser and paste this url in the address bar http://127.0.0.1:8000/reqgister/ y

OUTPUT

@ register X EE

€ > C © 127.0.0.1:8000/register/

? Gmail » YouTube mwz Dashboard | Hacker... Python Example - ja... Java Tutorial | Leamn... §® Aptitude Questions...

Employee Id
your id

Email address
your email

Name

name

Are you already a user login

When u tryto register with your details

44

@ register X +

= C ©® 127.0.0.1:8000/register/

1 Gmail » YouTube ws Dashboard | Hacker... Python Example - ja... Java Tutorial | Learn... §® Aptitude Questions...

Employee Id
emp123

Email address
vk@gmail.com

Name

virat

Are you already a user login

You get the output as follows

@ Document X +

& C ® 127.0.0.1:8000/register/user/

! Gmail » YouTube w» Dashboard | Hacker... Python Example - ja... Java Tutorial | Learn... 4® Aptitude Questions..

hello virat

Similarly if you paste this url in the address bar http://127.0.0.1:8000/login/

you get output as follows

45

@ login X +

< C ® 127.0.0.1:8000/login/

! Gmail » YouTube Hs Dashboard | Hacker... Python Example - ja... Java Tutorial | Learn... §® Aptitude Questions...

Login here

Employee id

Id

Email

mail

Are you a new user signup

If you login with your credentials

@ login X ar

& C ® 127.0.0.1:8000/login/

! Gmail » YouTube ®s Dashboard | Hacker... Python Example - ja... Java Tutorial | Learn... §® Aptitude Questions...

Login here

Employee id
emp123

Email

vk@gmai\.:on‘l

Are you a new user signup

You get this page

@ Document X +

o C ©® 127.0.0.1:8000/login/validateuser/

? Gmail » YouTube ws Dashboard | Hacker... Python Example - ja... Java Tutorial | Learn... §® Aptitude Questions...

hello virat

46

VIVA QUESTIONS
1. What are dynamic forms in Django?

2. How do you create a dynamic form in Django?

3. What is a Django signal?

4. How do you connect a signal to a model in Django?

5. What are the common use cases for Django signals?

47

MODULE-5

DJANGO REST FRAMEWORK

To work with the Django rest framework we should have the two basic requirements.
Python (3.6, 3.7, 3.8, 3.9, 3.10)

Django (2.2,3.0,3.1,3.2,4.0,4.1)

1. AIM :Install and configure Django Rest Framework Package.

DESCRIPTION :

Stepl: navigate to your project folder from the command prompt

Step2: Install Django rest framework using pip.

D:\django\EMS> pip install djangorestframework

Step3: Add ‘rest_framework’ to your INSTALLED_APPS in your settings.py file.

INSTALLED_APPS

'rest_framework'’

Now the Django rest framework is ready and available and you can use it in your project to
create the Web APIs.

2. Create Django rest end points using api_view and JSON Response.

To create the rest end points you have to return a JSON response from the requested url

Urls.py

fromdjango.urls import path,include
from . import views

urlpatterns = [
path(",views.my_view),

from rest_framework.response import Response
fromrest_framework.decorators import api_view

@api_view(['POST','GET','DELETET)
def my_view(request):

return Response({'status’:'success','message’":'request is success','details':'you can give any
request(“get","put"”,"delete™)'},status=200)

> Inviews.pywe have used a decorator api_view and a Response class from rest_framework.

@api_vie isa decorator provided bythe Django REST Framework (DRF) that is used to
specify that a function-based view or method-based view should be treated as a web API
view.

@api_vie takes an HTTP method or a list of HTTP methods as an argument. For example,
to specify that a view should handle only POST requests, you would use the
@api_view(['POST']) decorator.

The response class is used to returnthe JSON response to the client.

OUTPUT
» Now if you run the server and paste the url in your browser you get the output as

v View

My View [z =ik

HTTP 100 0K
Allow: POST, GFT, OPTTOM
Content-Type: application/jsor
Vary: Accept

Media type: gpplication/json v

Content:

» You canalso give the request to that particular url fromthe editor that you are working.
» Here inthis case | amusing VScode as my editor.

» Download the Thunder client extension and you can give a request fronthe editor itself.
» The below picture is the different requests given fromthe thunder client to our url.

49

50

New Request X

Send Status:

Activity

Response

IGED) 127.0.0.1:8000/

just now

B 127.0.0.1:8000,

@ 127.0.0.1:8000/

POSH 127.0.0.1:8000/

3. Create Django rest end points using Serializers and Models.

» InDjango, aserializer isacomponent ofthe Django REST framework (DRF) that is
used to convert complex data types, such as Django model instances, into Python
native data types that can be easily rendered into JSON, XML.

» Inorderto create a serializer you have to create a serializers.py file inside your app
employee

Urls.py

from django.urls import path,include
from . import views

urlpatterns = [
path(‘employees',views.Employees),

]

Serializers.py

fromrest_framework import serializers
from .models import *
class EmployeeSerializer(serializers.ModelSerializer):

class Meta:
model = Employee
fields=" all

51

views.py

from rest_framework.response import Response
fromrest_framework.decorators import api_view
from .models import *

from .serializers import *

@api_view(['GETY)

def Employees(request):
emps=Employee.objects.all()
serializer=EmployeeSerializer(emps,many=True)
return Response({'status":'success','description':'list of

employees','employees':serializer.data},status=200)

models.py

fromdjango.db import models

class Employee(models.Model):
eid=models.CharField(max_length=20)
email=models.CharField(max_length=50)
ename=models.CharField(max_length=20)

Runthe server and paste the url in the browser and you can see the output as

52

= C © 1270

! Gmail » YouTube @&

And you can see the output fromthe VScode editor as follows.

THUNDERCLEE.. O - New Request X
New Request
GET v http://127.0.0.1:8000/employees |"Send Status: Size:
Activity
_ Quey 2 Response
GED 127.0.0.1:8000/e. Query Parameters

just now

DED 127.0.0.1:8000/
@ 127.0.0.1:8000/

POSP 127.0.0.1:8000/

GED 127.0.0.1:8000/

4. Implement HT TP rest end points with all CRUD operations.
CRUD operations refers to the operations done onthe database, where

C- create -to create a new record.

R- retrive-retriving the records from database.
U- update-to update the records in the database.
D- delete the records in the database.

YV VYV

To implement the HTTP rest end points with all CRUD operations using DRF
we should use the api_view decorators inorder to specify the HTTP method.

53

The following are the endpoints which are responsible for different CRUD operations

Urls.py

urlpatterns = [
path(‘all',views.All),
path('new',views.New),
path('update/<str:eid>/",views.Update),
path('delete/<str.eid>/",views.Delete),

]

The following are the views that handles the different CRUD operations

Views.py

from rest_framework.response import Response
fromrest_framework.decorators import api_view
from .models import *

from .serializers import *

@api_view(['GET1)

def All(request):
emps=Employee.objects.all()
serializer=EmployeeSerializer(emps,many=True)
return Response(serializer.data,status=200)

@api_view(['POSTT)
def New(request):
serializer=EmployeeSerializer(data=request.data)
if serializer.is_valid():
serializer.save()
return Response(serializer.data,status=200)

@api_view(['PUTT)
def Update(request,eid):
emp=Employee.objects.get(eid=eid)
serializer=EmployeeSerializer(instance=emp,data=request.data)
IT serializer.is_valid():
serializer.save()
return Response(serializer.data,status=200)

@api_view(['DELETE)
def Delete(request,eid):
emp=Employee.objects.get(eid=eid)

emp.delete()
return Response("employee is deleted”,status=200)

so the each endpoint is handling the different CRUD operations as follows

Retriving all the employees (GET):

run the server and paste the url in the browser http://127.0.0.1:8000/api/all

@ All - Django RE » (379) Django Rest Framev X | @ Saved Messages X @ Selectemployee tochanc X | @ Django model metadata . X

Al =il

HTTP 200 OK
Allow: GET, OPT
Content-Typ
Vary: Accept

Adding a new employee (POST):

run the server and paste the url in the browser http://127.0.0.1:8000/api/new

55

@ New - Django REST fran » (379) Django Rest Framev X | @ Saved Messages X @ Select employee tochanc X | @ Django model metadata - X +

€ C ® 12700.

1 Gmail » Youlube @ Telegram

HTTP 485 Method Not Allowed
Allow: P , OPTIONS
Content-Type: application/json
vary: Accept

“"detail”: "Method \"GET\" not allowed."
Media type: application/json v
Content: {
"id": 17,
"gid": "emp102",
"email": "sita@gmail.com”,
}

-
After clicking on post the record is added to the employee table

If you again see the total no. of employees present , you can observe the difference.

@ All - Django REST framev. X » (379) Django Rest Framev X | @@ Saved Messages X @ Selectemployee tochanc X | @ Django model metadata . X

< C © 12700. 0 £l

1 Gmail » Youlube @& Telegra

All

Al cer -

GET /api/all

HTTP 200 OK

Allow: GET, OPTIONS
Content-Type: application/json
Vary: Accept

Updating an employee using empid (PUT):

run the server and paste url http://127.0.0.1:8000/api/update/empl01/

56

@ Update - Django REST fr: X

< C ® 12700.

t Gmail > YouTube @ Telegra

Media type: application/json v

Content: {

“email": “ram@gmail com",
"ename™ "sitaram”
H

After clicking on put, the record with empid emp101 is updated i.e the name of the employee
from ramto sitaram

If you again see the total no. of employees present , you can observe the difference.

@ All-Django REST framev X * (379) Django Rest Fframev X = @ Saved Messages X @ Selectemployeetochan: X | @ Django model metadata X +

* M OM

< C ©® 127.00.1:8000/api/all

t Gmail » YouTube @@ Telegram

Al cer -

HTTP 200 OK

Allow: GET, OPTIONS
Content-Type: applicatior
vary: Accept

Deleting an employee using empid (DELETE):

run the server and paste url http://127.0.0.1:8000/api/delete/emp101/

57

@ Delete - Django REST fr

< c 127.001

! Gmail » YouTube @ Telegram

Delete

Delete

GET /api/delete/emp101/

HTTP 485 Method Not Allowed
Allow: DELETE, OPTIONS
Content-Type: application/json
Vvary: Accept

"detail”: "Method \"GET\" not allowed."

After clicking on delete, the record with empid emp101 is going to delete and there is prompt
is there for us

If you click on delete again the record with the empid value as emp101 is deleted. If you
again see the total no. of employees present , you can observe the difference.

@ Delete - Django REST fra; X > (380) Django Rest Framey X s X @ Selectemployee tochanc X | @ Djangor
€ c 127.0.0.1:800(

Gmail » YouTube @ Telegram

Are you sure you want to delete this Delete?

Click DELETE

58

@ Saved Messages X @ Selectemployee tochanc X | @ Django model metadate

@ All-Django REST framev. X > (380) Django Rest Framey X

= c 127.0.0.1:8000/api/all

! Gmail » Youlube @@ Telegram

Al

All

GET /api/all

HTTP 200 OK
Allow: GET, Of
Content-Type:
vary: Accept

102"
"sitagmail .com

59

VIVA QUESTIONS

1. What is Django Rest Framework (DRF)?

2. What is a serializer in Django Rest Framework?

3. What is the difference between ariview and viewset in DRF?
4. How does Django Rest Framework handle authentication?

5. What is a router in Django Rest Framework?

60

14. AIM :Real-Time Collaborative Application with Django and WebSockets
DESCRIPTION :

Steps to Build a Real-Time Collaborative Application:

1. Setting up Django Project

First, create a Django project if you haven’t already.

bash

Copy code

django-admin startproject realtime app
cd realtime app

python manage.py startapp chat

2. Install Django Channels

Django Channels is an extension for Django that adds support for WebSockets and other asynchronous
protocols. To install Channels, run:

bash
Copy code
pip install channels

After installing Channels, you need to configure it in your settings.py.
3. Configure Channels in settings.py

In your settings.py, add 'channels' t0 your INSTALLED APPS:

python

Copy code

INSTALLED APPS = [
'django.contrib.admin’',
'django.contrib.auth',
'django.contrib.contenttypes’',
'django.contrib.sessions’',
'django.contrib.messages’',
'django.contrib.staticfiles’',
'chat', # your app
'channels', # channels app

]

Set AsGT APPLICATION to point to your routing configuration:

python
Copy code
ASGI APPLICATION = 'realtime app.asgi.application’

Then, configure the database to use for Channels (e.g., Redis) for handling WebSocket connections. Redis
is typically used as a backend to handle the channel layer, which makes it easy to handle multiple
connections.

Install Redis and Channels Redis:

61

bash
Copy code
pip install channels redis

In settings.py, add the following:

python
Copy code
CHANNEL LAYERS = {
'default': {
'BACKEND': 'channels redis.core.RedisChannellayer',
'"CONFIG': {
"hosts": [('127.0.0.1', 6379)1,

}y
}y

Make sure you have Redis installed and running on your local machine or use a hosted Redis solution.
4. Create an ASGI Configuration

Create an asgi . py file in your project root (next to settings.py) if it doesn't already exist.

python

Copy code

realtime app/asgi.py

import os

from django.core.asgi import get asgi application

from channels.routing import ProtocolTypeRouter, URLRouter
from channels.auth import AuthMiddlewareStack

from chat.consumers import ChatConsumer

os.environ.setdefault ('DJANGO SETTINGS MODULE', 'realtime app.settings')

application = ProtocolTypeRouter ({
"http": get asgi application(),
"websocket": AuthMiddlewareStack (
URLRouter ([
Add URL routing for WebSocket connections
Example for chat
path('ws/chat/<str:room_name>/', ChatConsumer.as_asgi()),
1)
),
})

5. Create a WebSocket Consumer

In Django Channels, a "consumer" is similar to a Django view but for handling WebSocket connections.
Create a consumers . py file inside your app (e.g., chat/consumers.py):

python

Copy code

chat/consumers.py

import json

from channels.generic.websocket import AsyncWebsocketConsumer

class ChatConsumer (AsyncWebsocketConsumer) :
async def connect (self):
self.room name = self.scope['url route']['kwargs']['room name']

62

self.room group name = f'chat {self.room name}'

Join room group

await self.channel layer.group_ add(
self.room group name,
self.channel name

)

await self.accept /()

async def disconnect(self, close code):
Leave room group
await self.channel layer.group discard(
self.room group name,
self.channel name

)

Receive message from WebSocket

async def receive(self, text data):
text data json = json.loads (text data)
message = text data Jjson['message']

Send message to room group
await self.channel layer.group_ send/(
self.room group name,

{
'type': 'chat message',
'message': message

)

Receive message from room group
async def chat message (self, event):
message = event['message']

Send message to WebSocket
awalit self.send(text data=json.dumps ({
'message': message

1))

6. Routing WebSocket Requests

In the asgi.py file, you already defined the routing for WebSockets. Here’s a closer look:

python
Copy code
path('ws/chat/<str:room_name>/', ChatConsumer.as _asgi()),

This will match WebSocket requests at the URL /ws/chat/<room name>/, Where room name can be any
string that identifies the chat room.

7. Creating a Frontend with WebSocket
For the frontend, you can use JavaScript to connect to the WebSocket.

Here’s an example of how to create a simple HTML template with a WebSocket connection:

html

Copy code

<!-- templates/chat/room.html -->
<!DOCTYPE html>

63

<html>

<head>
<title>Real-time Chat</title>
<style>
#chat-log {
border: 1px solid #ccc;
height: 200px;
overflow-y: scroll;
margin-bottom: 10px;
}
</style>
</head>
<body>
<hl>Chat Room: {{ room name }}</hl>

<div id="chat-log"></div>
<input id="chat-message-input" type="text" placeholder="Type your message">
<button id="chat-message-input-btn">Send</button>

<script>
const roomName = "{{ room name }}";
const chatSocket = new WebSocket ('ws://' + window.location.host + '/ws/chat/'
+ roomName + '/');

chatSocket.onmessage = function(e) {
const data = JSON.parse (e.data);
document.querySelector ('#chat-log') .innerHTML += '<p>' + data.message +

l</p>l;
}i
document.querySelector ('#chat-message-input-btn') .onclick = function (e) {
const messagelInputDom = document.querySelector ('#chat-message-input');
const message = messagelnputDom.value;
chatSocket.send (JSON.stringify({ 'message': message 1}));
messagelnputDom.value = '';
}i
</script>
</body>
</html>

8. Views for Serving the Template

In your Django app, create a view to render the chat room page:

python

Copy code

chat/views.py

from django.shortcuts import render

def room(request, room name) :
return render (request, 'chat/room.html', {
'room name': room name

})

Add a URL pattern for this view in your app’s urls.py:

python

Copy code

chat/urls.py

from django.urls import path
from . import views

urlpatterns = [

64

path('<str:room name>/', views.room, name='room'),

]

And make sure to include the app’s URLSs in your main urls.py:

python

Copy code

realtime app/urls.py

from django.contrib import admin

from django.urls import path, include

urlpatterns = [
path('admin/', admin.site.urls),
path('chat/', include('chat.urls')),

9. Running the Application

Make sure Redis is running, and then run your Django project:

bash
Copy code
python manage.py runserver

Navigate to http://127.0.0.1:8000/chat/some room/ IN your browser to see the real-time chat in

action. Multiple users can open the same room in different browsers, and they will see messages in real-
time.

15. Django with Redis for Caching and Session Management

Steps to Set Up Django with Redis for Caching and Session Management
1. Install Redis and Required Packages

First, you'll need to install the redis package for Python and the django-redis package which helps
Django interact with Redis more easily.

bash
Copy code
pip install redis django-redis

Ensure you have Redis installed and running on your local machine or use a managed Redis service.
2. Configure Redis for Caching in Django

In Django, you can use Redis as a caching backend by configuring it in your settings.py.

Caching Configuration

In your settings.py, add the following cache configuration to use Redis:

python

65

Copy code
settings.py

CACHES = {
'default': {
'BACKEND': 'django redis.cache.RedisCache',
'LOCATION': 'redis://127.0.0.1:6379/1', # Redis server URL (127.0.0.1:6379,
database 1)
'OPTIONS': {

'CLIENT CLASS': 'django redis.client.DefaultClient',
},

Explanation of parameters:

e BACKEND: django redis.cache.RedisCache IS the backend class for caching using Redis.
e LOCATION: The Redis server location. Here it points to 1ocalhost (127.0.0.1) and uses the
second Redis database (/1).
e OPTIONS: These are additional configurations. You can use 'CLIENT CLASS':
'django redis.client.DefaultClient' to Specify a default client class.

3. Configure Redis for Session Management

To store Django sessions in Redis (instead of the default database), you can set up session management like
this:

Session Configuration

In your settings.py, add the following configuration for session management:

python
Copy code
settings.py

Session engine to use Redis as a session store
SESSION_ENGINE = "django.contrib.sessions.backends.cache"
SESSION CACHE ALIAS = "default" # Use the default cache configuration

With the above settings, Django will store session data in Redis instead of the default database-backed
session engine.

4. Using Redis for Cache in Views
Once Redis caching is set up, you can use it in your views to store and retrieve cached data.
Example: Caching a view in Django.

python

Copy code

views.py

from django.shortcuts import render
from django.core.cache import cache

def cached view(request):
Try to get the cached data
cached data = cache.get('some key')

if not cached data:

66

If cache is empty, calculate the value and cache it
cached data = "This is some expensive data or result"
Set cache with a timeout of 60 seconds

cache.set ('some key', cached data, timeout=60)

return render (request, 'cached view.html', {'cached data': cached data})
5. Using Redis for Sessions

Once you have Redis configured for session management, you can use the Django session framework just
like you normally would. The only difference is that session data will now be stored in Redis.

Example of setting and getting session data:

python

Copy code

views.py

from django.shortcuts import render

def set session(request):
Set session data
request.session['user name'] = 'John Doe'

return render (request, 'set session.html', {'user name': 'John Doe'})

def get session(request):
Get session data
user name = request.session.get('user name', 'Guest')
return render (request, 'get session.html', {'user name': user name})

In this example:

e set_session: Stores the user name in the session.
e get_session: Retrieves the user name from the session.

Optional: Using Redis for Other Caching Features

e Cache versioning: You can use cache versioning to prevent old versions of cache from being used.

e Cache timeout: Use cache.set () With a timeout argument to control how long the data should
remain in the cache.

e Cache keys: Store and retrieve data from Redis using unique keys, e.g.,

[

cache.get ('user _data %s' % user id).
Full Example: Setting Up Redis with Caching and Session Management
Here is a full example integrating both caching and session management in Django with Redis.

1. Install the packages:

bash
Copy code
pip install redis django-redis

2. Configure settings.py:

python
Copy code
settings.py

67

Use Redis for caching

CACHES = {
'default': {
'BACKEND': 'django_ redis.cache.RedisCache',
'"LOCATION': 'redis://127.0.0.1:6379/1",
'"OPTIONS': {
'CLIENT CLASS': 'django redis.client.DefaultClient’',

s
}

Use Redis for session management
SESSION_ENGINE = "django.contrib.sessions.backends.cache"
SESSION CACHE ALIAS = "default"

Optional: Use Redis as the default backend for the Django Channels (if you want
WebSockets support)
CHANNEL LAYERS = {

'default': {
'BACKEND': 'channels redis.core.RedisChannellayer',
'"CONFIG': {
'hosts': [('127.0.0.1', 6379)1,

s
}y

3. Create Views for Caching and Session Management:

python
Copy code

views.py
from django.shortcuts import render
from django.core.cache import cache

Example to cache a view's data

def cached view(request):
Try to get the cached data
cached data = cache.get('some key')

if not cached data:
If cache is empty, calculate the value and cache it
cached data = "This is some expensive data or result"
Set cache with a timeout of 60 seconds
cache.set ('some key', cached data, timeout=60)

return render (request, 'cached view.html', {'cached data': cached data}l)

Example to set session data
def set session(request):
Set session data
request.session['user name'] = 'John Doe'
return render (request, 'set session.html', {'user name': 'John Doe'})

Example to get session data
def get session(request):
Get session data
user name = request.session.get('user name', 'Guest')
return render (request, 'get session.html', {'user name': user name})

4. Create Templates for the Views:

html
68

Copy code
<!-- cached view.html -->
<!DOCTYPE html>
<html>
<head>
<title>Cache Example</title>
</head>
<body>
<hl>Cached Data: {{ cached data }}</hl>
</body>
</html>
html
Copy code
<!-- set session.html -->
<!DOCTYPE html>
<html>
<head>
<title>Set Session Example</title>
</head>
<body>
<hl>Session Data: {{ user name }1</h1l>
</body>
</html>
html
Copy code
<!-- get session.html -->
<!DOCTYPE html>
<html>
<head>
<title>Get Session Example</title>
</head>
<body>
<hl>Session Data: {{ user name }1</h1>
</body>
</html>

5. Add URL Routing:

python

Copy code

urls.py

from django.urls import path
from . import views

urlpatterns = [
path('cached/', views.cached view, name='cached view'),

path('set-session/', views.set session, name='set session'),
path('get-session/', views.get session, name='get session'),

6. Run the Project:

Make sure Redis is running locally or via a remote server.

bash

Copy code

redis-server

python manage.py runserver

Now you can visit:

e /cached/ to see the cached data.

69

e /set-session/ tO Set session data.
e /get-session/ t0 get session data.

16. AIM :Develop a Multi-Tenant SaaS Application
DESCRIPTION:

Steps to Develop a Multi-Tenant SaaS Application in Django
1. Create a Django Project and App

Let’s start by creating a new Django project and a tenant app.

bash

Copy code

django-admin startproject saas project
cd saas_project

python manage.py startapp tenant

2. Install Dependencies

You'll need to install django-tenants, a package designed for multi-tenancy, which helps with managing
tenants in a shared database schema.

bash
Copy code
pip install django-tenants

3. Configure settings.py

Modify the settings.py to include the necessary configurations for multi-tenancy. Update
INSTALLED APPS, DATABASES, and middleware settings.

python
Copy code
settings.py

INSTALLED APPS = [
Default Django apps...
'django.contrib.admin’',
'django.contrib.auth',
'django.contrib.contenttypes’',
'django.contrib.sessions’',
'django.contrib.messages’',
'django.contrib.staticfiles’',

Tenant apps
'tenant’',
'django_tenants', # django-tenants app

]

DATABASES = {
'default': {

'ENGINE': 'django.db.backends.postgresqgl psycopg2',
'NAME': 'saas db', # Single shared database
'USER': 'your db user',

'"PASSWORD': 'your db password',

'HOST': 'localhost',

'"PORT': '5432',

70

}

Use django-tenants middleware

MIDDLEWARE = [
'django_tenants.middleware.TenantMiddleware', # Handles tenant-specific routing
'django.middleware.security.SecurityMiddleware',
'django.contrib.sessions.middleware.SessionMiddleware',
'django.middleware.common.CommonMiddleware',
'django.middleware.csrf.CsrfViewMiddleware',
'django.contrib.auth.middleware.AuthenticationMiddleware',
'django.contrib.messages.middleware.MessageMiddleware',
'django.middleware.clickjacking.XFrameOptionsMiddleware',

]

Define the domain for each tenant
TENANT MODEL = "tenant.Tenant" # The model to represent tenants
TENANT DOMAIN MODEL = "tenant.Domain" # The model to represent tenant domains

4. Create Tenant Models

You will need to create models to represent your tenants and their domains. A tenant typically has a name
and a domain that maps to the tenant’s specific subdomain or URL.

python
Copy code
tenant/models.py

from django.db import models
from django_ tenants.models import TenantMixin

class Tenant (TenantMixin) :
name = models.CharField(max length=255)
created on = models.DateField(auto now_add=True)

def str (self):
return self.name

class Domain (models.Model) :
tenant = models.ForeignKey (Tenant, related name='domains',

on _delete=models.CASCADE)
domain = models.CharField(max length=253) # E.g., 'tenantl.myapp.com'
is primary = models.BooleanField(default=True)

def str (self):
return self.domain

The Tenant model inherits from TenantMixin, which is provided by django-tenants and manages
tenant-specific configurations.

5. Define Tenant-Aware Models

To ensure that each tenant’s data is isolated, you need to define tenant-specific models. You can do this by
inheriting from TenantModel provided by django-tenants.

python
Copy code
tenant/models.py (continued)

from django tenants.models import TenantModel

class Product (TenantModel) :

71

tenant = models.ForeignKey (Tenant, on delete=models.CASCADE)
name = models.CharField(max length=255)

price = models.DecimalField(max digits=10, decimal places=2)
description = models.TextField ()

def str (self):
return self.name

In the product model, the tenant field ensures that each product is associated with a particular tenant.
6. Set Up URLs for Each Tenant

To differentiate between tenants, you can use subdomains. You will need to modify the uris.py to handle
different tenant URLSs.

python
Copy code
saas_project/urls.py

from django.contrib import admin
from django.urls import path, include

urlpatterns = [
path('admin/', admin.site.urls),
path('tenant/', include('tenant.urls')), # Tenant-specific URLs

For each tenant, you can add a specific view and URL that is unique to the tenant.
7. Tenant-Specific Views

Create views that will serve tenant-specific data. For example, let’s create a view that displays products.

python
Copy code
tenant/views.py

from django.shortcuts import render
from .models import Product

def product list(request):

tenant = request.tenant # Access the tenant from the request
products = Product.objects.filter (tenant=tenant)
return render (request, 'tenant/product_list.html', {'products': products})

8. Create Templates for Tenant Views

Create a template to render the products for the tenant.

html
Copy code
<!-- tenant/templates/tenant/product list.html -->

<!DOCTYPE html>

<html>

<head>
<title>Tenant Products</title>

</head>

<body>
<hl>Products for {{ request.tenant.name }}</hl>

72

{% for product in products %}

<1i>{{ product.name }} - {{ product.price }}</1i>
{% endfor %}

</body>
</html>

9. Set Up URLs for Tenant-Specific Views

Now, set up tenant-specific URLS to display the products.

python
Copy code
tenant/urls.py

from django.urls import path
from . import views

urlpatterns = [
path ('products/', views.product list, name='product list'),

]
10. Create the Tenant Database Schema

When you run migrate, django-tenants Will create separate schemas in the same database for each
tenant.

bash
Copy code
python manage.py migrate schemas --shared

This will create the shared schema (for models like Tenant and pomain), and then create individual
schemas for each tenant when a new tenant is created.

11. Create a Tenant and Add Domain

To create a tenant, you can use the Django shell:

bash

Copy code

python manage.py shell

python

Copy code

from tenant.models import Tenant, Domain

Create a new tenant
tenant = Tenant (name="Tenant 1")
tenant.save ()

Add a domain for the tenant

domain = Domain (tenant=tenant, domain="tenantl.myapp.com", is primary=True)
domain.save ()

12. Tenant Middleware
The django-tenants middleware will automatically route requests to the correct tenant based on the

subdomain or domain. Make sure to have the middleware configured correctly, as shown in the
settings.py earlier.

73

13. Run the Application

Once you’ve set up everything, you can start the Django development server.

bash
Copy code
python manage.py runserver

Now you can access tenant-specific data via URLS like:

e http://tenantl.myapp.com/tenant/products/ for Tenant 1
e http://tenant2.myapp.com/tenant/products/ for Tenant 2 (if you add another tenant).

17. AIM :Create a Social Media Platform with Django
DESCRIPTION:

Step-by-Step Code

1. Setting Up Django Project and App

First, create a new Django project and app:

bash

Copy code

django-admin startproject social media
cd social media

python manage.py startapp accounts
python manage.py startapp posts

2. Install Dependencies

You will need django and django-allauth (for user authentication, optional but useful):

bash
Copy code
pip install django django-allauth

3. Configure settings.py

Update settings.py to include necessary apps and middleware:

python
Copy code
settings.py

INSTALLED APPS = [
'django.contrib.admin’',
'django.contrib.auth',
'django.contrib.contenttypes',
'django.contrib.sessions’',
'django.contrib.messages’',
'django.contrib.staticfiles’',

'accounts', # Custom user app

'posts’', # App for posts
'django.contrib.sites', # Needed for allauth
'allauth', # Allauth for authentication

74

'allauth.account', # Account management via allauth
'allauth.socialaccount', # Social login (optional)
'django.contrib.sites’',

]

MIDDLEWARE = [
'django.middleware.security.SecurityMiddleware',
'django.contrib.sessions.middleware.SessionMiddleware',
'django.middleware.common.CommonMiddleware',
'django.middleware.csrf.CsrfViewMiddleware',
'django.contrib.auth.middleware.AuthenticationMiddleware',
'django.contrib.messages.middleware.MessageMiddleware',
'django.middleware.clickjacking.XFrameOptionsMiddleware',

]

AUTHENTICATION_BACKENDS =
'allauth.account.auth backends.AuthenticationBackend',

)

Use email as the unique identifier for users
ACCOUNT AUTHENTICATED LOGIN REDIRECTS = True

ACCOUNT EMATIL REQUIRED = True
ACCOUNT EMAIL VERIFICATION = "mandatory"
LOGIN REDIRECT URL = "/"

Sites framework for handling multiple domains (needed for allauth)
SITE ID =1

Make sure to set up urls.py for allauth:

python
Copy code
social media/urls.py

from django.contrib import admin
from django.urls import path, include

urlpatterns = [
path('admin/', admin.site.urls),
path ('accounts/', include('allauth.urls')), # Add allauth urls for authentication

4. Create User Profile Model

In the accounts app, create a model for user profiles. Users can have additional information such as bio,
profile picture, etc.

python
Copy code
accounts/models.py

from django.contrib.auth.models import User
from django.db import models

class Profile (models.Model) :
user = models.OneToOneField(User, on delete=models.CASCADE)
bio = models.TextField (blank=True, null=True)
profile picture = models.ImageField(upload to='profiles/', blank=True, null=True)

def str (self):
return self.user.username

75

5. User Registration and Profile Update

We can use al1auth for user registration, but you may want to allow users to update their profile after
registration. Here is a form to handle the profile update:

python
Copy code
accounts/forms.py

from django import forms
from .models import Profile

class ProfileUpdateForm(forms.ModelForm) :
class Meta:
model = Profile
fields = ['bio', 'profile picture']

And a view to handle this:

python
Copy code
accounts/views.py

from django.shortcuts import render, redirect
from .forms import ProfileUpdateForm
from django.contrib.auth.decorators import login required

@login required
def profile view(request):
profile, created = Profile.objects.get or create (user=request.user)
if request.method == 'POST':
form = ProfileUpdateForm(request.POST, request.FILES, instance=profile)
if form.is valid():
form.save ()
return redirect ('profile')
else:
form = ProfileUpdateForm(instance=profile)

return render (request, 'accounts/profile.html', {'form': form, 'profile':
profile})

Create the template for displaying and updating profiles:

html
Copy code
<!-- accounts/templates/accounts/profile.html -->

{% extends 'base generic.html' %}

{% block content %}
<h2>{{ user.username }}'s Profile</h2>

<form method="POST" enctype="multipart/form-data">
{%$ csrf token %}
{{ form.as p }}
<button type="submit">Update Profile</button>
</form>
{% endblock %}

6. Create the Post Model

Now, create the post model in the posts app. Each post should belong to a user and have a text content.
76

python
Copy code
posts/models.py

from django.db import models
from django.contrib.auth.models import User

class Post (models.Model) :
user = models.ForeignKey (User, on delete=models.CASCADE)
content = models.TextField()
created at = models.DateTimeField(auto now_add=True)

def str (self):
return f"{self.user.username}'s post"

class Meta:
ordering = ['-created at']

7. Create Views for Posts

Now create views to allow users to post content and display posts.

python
Copy code
posts/views.py

from django.shortcuts import render, redirect
from .models import Post
from django.contrib.auth.decorators import login required

@login required
def post create(request):
if request.method == 'POST':
content = request.POST.get ('content')
if content:
Post.objects.create (user=request.user, content=content)
return redirect ('post list')
return render (request, 'posts/post create.html')

def post list (request):
posts = Post.objects.all()
return render (request, 'posts/post list.html', {'posts': posts})

8. Create Post Templates

For displaying posts and creating new ones, you need templates.

html

Copy code

<!-- posts/templates/posts/post create.html -->
{% extends 'base generic.html' %}

{% block content %}
<h2>Create a Post</h2>
<form method="POST">
{%$ csrf token %}
<textarea name="content" placeholder="What's on your mind?"></textarea>
<button type="submit">Post</button>
</form>
{% endblock %}
html
Copy code
<!-- posts/templates/posts/post list.html -->

77

{% extends 'base generic.html' %}

{% block content %}
<h2>All Posts</h2>
{$ for post in posts %}
<div>
<h4>{{ post.user.username }}:</h4>
<p>{{ post.content }}</p>
<small>{{ post.created at }}</small>
</div>
{%$ endfor %}
{%$ endblock %}

9. Create the Follow System

For a simple follow/unfollow system, you can create a Fo11ow model:

python
Copy code
accounts/models.py (continued)

class Follow (models.Model) :
user = models.ForeignKey (User, related name='followers', on delete=models.CASCADE)
following = models.ForeignKey (User, related name='following',
on_delete=models.CASCADE)

def str (self):
return f"{self.user.username} follows {self.following.username}"

Add views to follow and unfollow users:

python
Copy code
accounts/views.py (continued)

from .models import Follow

@login required
def follow user (request, username) :
user to follow = User.objects.get (username=username)
if user to follow != request.user:
Follow.objects.get or create (user=request.user, following=user to follow)
return redirect ('post list')

@login required

def unfollow user (request, username) :
user to unfollow = User.objects.get (username=username)
Follow.objects.filter (user=request.user, following=user to unfollow) .delete()
return redirect ('post list')

10. Add URLs for Follow Views

Now, set up the URLSs for the follow/unfollow actions:

python
Copy code
accounts/urls.py

from django.urls import path
from . import views

78

urlpatterns = [
path('profile/', views.profile view, name='profile'),
path('follow/<str:username>/', views.follow user, name='follow user'),
path ('unfollow/<str:username>/', views.unfollow user, name='unfollow user'),

11. Set Up URL Routing

Set up URLSs for the post views in posts/urls.py:

python
Copy code
posts/urls.py

from django.urls import path

from . import views
urlpatterns = [
path('', views.post list, name='post list'),

path('create/', views.post create, name='post create'),

1Include these URLSs in the main urls.py:
python

Copy code

social media/urls.py

from django.contrib import admin
from django.urls import path, include

urlpatterns = [
path('admin/', admin.site.urls),
path ('accounts/', include ('accounts.urls')),

path ('posts/', include ('posts.urls')),

79

	COURSE OUTCOMES (CO’s)
	PROGRAM EDUCATIONAL OBJECTIVES (PEOs)
	PROGRAM OUTCOMES (POs)
	PROGRAM SPECIFIC OUTCOMES (PSOs)
	--- DJANGO FRAME WORK LAB SYLLABUS
	List of Programs:
	List of Programs: (1)
	List of Programs: (2)
	List of Programs: (3)
	List of Programs: (4)
	-- COURSE OUTCOMES Vs PO’s & PSO’s

	SYLLABUS INDEX
	Instructions to students Pre-lab activities:
	In-lab activities:
	Post-lab activities:
	General Instructions:

	MODULE-1
	1A) AIM: Create Django environment setup and installation in windows/Linux
	DESCRIPTION:
	2) AIM :Create DJANGO project and app structure with django-admin commands
	3. AIM :Deployment of project in server
	1. What is Django and why is it used in web development?
	2. Can you explain the concept of "MTV" in Django?
	3. What are Django's main features?.
	4. How does Django handle URLs and routing in a web application?
	5. What are Django models, and how do they work?
	6. How do you create a Django project and a Django app?
	7. What is the role of Django templates?.
	9. What is Django’s Admin interface, and how can you customize it?
	10. How does Django handle forms and form validation?

	MODULE-2
	1. AIM : Create template in Django Project to process user interface
	2. AIM :Create multiple routes from using Django URL’s.
	3. AIM :Implement template inheritance with views and images.
	DESCRIPTION:
	1. What are Django templates?
	2. What is Django Template Language (DTL)?
	3. How do you pass data from views to templates in Django?
	4. What are template tags in Django?
	5. What are template filters in Django?.
	7. What is template inheritance in Django?
	8. How do you include other templates in a Django template?
	9. What are static files in Django templates, and how do you use them?

	2) AIM :Implement CRUD operations using django models
	4) AIM :Implement data rendering with templates and data routing.
	1. What is the role of Django models in web development?
	2. Explain the concept of Django ORM and how it relates to models.
	3. What are the different types of fields available in Django models, and how do they work?
	4. What is a ForeignKey in Django models, and how is it used to define relationships?
	5. What is the significance of the save() method in Django models?

	1. AIM :Create user registration and login authentication using Django forms
	1. What are dynamic forms in Django?
	2. How do you create a dynamic form in Django?
	3. What is a Django signal?
	4. How do you connect a signal to a model in Django?
	5. What are the common use cases for Django signals?

	MODULE-5
	DJANGO REST FRAMEWORK
	1. AIM :Install and configure Django Rest Framework Package.
	3. Create Django rest end points using Serializers and Models.
	4. Implement HTTP rest end points with all CRUD operations.
	1. What is Django Rest Framework (DRF)?
	2. What is a serializer in Django Rest Framework?
	4. How does Django Rest Framework handle authentication?
	5. What is a router in Django Rest Framework?
	DESCRIPTION :
	Steps to Build a Real-Time Collaborative Application:
	1. Setting up Django Project
	2. Install Django Channels
	3. Configure Channels in settings.py
	4. Create an ASGI Configuration
	5. Create a WebSocket Consumer
	6. Routing WebSocket Requests
	7. Creating a Frontend with WebSocket
	8. Views for Serving the Template
	9. Running the Application

	Steps to Set Up Django with Redis for Caching and Session Management
	1. Install Redis and Required Packages
	2. Configure Redis for Caching in Django
	Caching Configuration

	3. Configure Redis for Session Management
	Session Configuration

	4. Using Redis for Cache in Views
	5. Using Redis for Sessions

	Optional: Using Redis for Other Caching Features
	Full Example: Setting Up Redis with Caching and Session Management
	16. AIM :Develop a Multi-Tenant SaaS Application
	DESCRIPTION:
	Steps to Develop a Multi-Tenant SaaS Application in Django
	1. Create a Django Project and App
	2. Install Dependencies
	3. Configure settings.py
	4. Create Tenant Models
	5. Define Tenant-Aware Models
	6. Set Up URLs for Each Tenant
	7. Tenant-Specific Views
	8. Create Templates for Tenant Views
	9. Set Up URLs for Tenant-Specific Views
	10. Create the Tenant Database Schema
	11. Create a Tenant and Add Domain
	12. Tenant Middleware
	13. Run the Application

	DESCRIPTION: (1)
	Step-by-Step Code
	1. Setting Up Django Project and App
	2. Install Dependencies
	3. Configure settings.py
	4. Create User Profile Model
	5. User Registration and Profile Update
	6. Create the Post Model
	7. Create Views for Posts
	8. Create Post Templates
	9. Create the Follow System
	10. Add URLs for Follow Views
	11. Set Up URL Routing

